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a b s t r a c t

We describe CPMC-Lab, aMatlab program for the constrained-path and phaseless auxiliary-field Monte
Carlo methods. These methods have allowed applications ranging from the study of strongly correlated
models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present
package implements the full ground-state constrained-path Monte Carlo (CPMC) method inMatlabwith
a graphical interface, using the Hubbard model as an example. The package can perform calculations in
finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling
and all other algorithmic details of a total energy calculation are included and illustrated. This open-
source tool allows users to experiment with various model and run parameters and visualize the results.
It provides a direct and interactive environment to learn the method and study the code with minimal
overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantumMonte
Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a
template for developing a production code for AFQMC total energy calculations in real materials. Several
illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy,
potential energy, and charge- and spin-gaps.

Program summary
Program title: CPMC-Lab
Catalogue identifier: AEUD_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUD_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 2850
No. of bytes in distributed program, including test data, etc.: 24838
Distribution format: tar.gz
Programming language:Matlab.
Computer: The non-interactive scripts can be executed on any computer capable of running Matlab
with all Matlab versions. The GUI requires Matlab R2010b (version 7.11) and above. Operating system:
Windows, Mac OS X, Linux.
RAM: Variable.
Classification: 7.3.
External routines:Matlab
Nature of problem:
Obtaining ground state energy of a repulsive Hubbard model in a supercell in any number of dimensions.
Solution method:
In the Constrained Path Monte Carlo (CPMC) method, the ground state of a many-fermion system is
projected from an initial trial wave function by a branching random walk in an overcomplete basis of
Slater determinants. Constraining the determinants according to a trial wave function |ΨT ⟩ removes the
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exponential decay of the signal-to-noise ratio characteristic of the sign problem. The method is exact if
|ΨT ⟩ is exact.
Unusual features:
Direct and interactive environment with a Graphical User Interface for beginners to learn and study the
Constrained Path Monte Carlo method with minimal overhead for setup.
Running time:
The sample provided takes a few seconds to run, the batch sample a few minutes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The study of interacting quantummany-body systems remains
an outstanding challenge, especially systems with strong particle
interactions, where perturbative approaches are often ineffective.
Numerical simulations provide a promising approach for studying
such systems. One of the most general numerical approaches is
quantum Monte Carlo (QMC) methods based on auxiliary fields,
which are applied in condensed matter physics, nuclear physics,
high-energy physics and quantum chemistry. These methods
allow essentially exact calculations of ground-state and finite-
temperature equilibrium properties of interacting many fermion
systems.

As is well-known, however, these methods suffer from the sign
problem which severely limits their applicability. Considerable
progress has been achieved in circumventing this problem by con-
straining the random walks while sampling the space of auxil-
iary fields [1]. Many applications of this method involve lattices
where there is a sign problem, for example, Hubbard-like models
where the local interactions lead to auxiliary-fields that are real. In
these cases the method is known as Constrained Path Monte Carlo
(CPMC) [2,3]. The method can also be generalized to treat realis-
tic electron–electron interactions to allow for ab initio calculations
on real materials [4,5]. For these systems there is a phase prob-
lem because the Coulomb interaction leads to complex auxiliary
fields. In such systems, the method is referred to as phaseless or
phase-free auxiliary-field QMC (AFQMC). In both cases (lattice and
continuum), the idea behind the method is to constrain the sign
or phase of the overlap of the sampled Slater determinants with
a trial wave function. The constraint eliminates the sign or phase
instability and restores low power (typically to the third power of
system size) computational scaling. Applications to systems rang-
ing from lattice models [6,7] of correlated systems to solids [8,9]
to atoms and molecules [10] have shown that these methods are
very accurate, even with simple trial wave functions taken directly
from Hartree–Fock or density-functional calculations.

Since these methods combine standard mean-field approaches
with stochastic QMC, they pose a formidable barrier to beginners.
As such, it is useful to have a pedagogical platform to learn the
methods and to aid further code development. In this paper, we
present a Matlab package that fulfills these roles. The package
illustrates the CPMCmethod for the Hubbardmodel, with a graph-
ical interface. The ground-state energy is calculated using im-
portance sampling and implementing the full algorithmic details.
With this open-source package, calculations can be performed
directly on Hubbard-like models in any dimensions, under any
boundary conditions. It will be straightforward to generalize the
code for applications in many other models of correlated elec-
tron systems. Furthermore, the code contains the core QMC algo-
rithmic ingredients for a total energy AFQMC calculation. These
ingredients can be combined with standard electronic structure
machineries [11] (see, e.g., Refs. [12,13]) to develop a production
code for AFQMC total energy calculations in molecules and solids.
The tool presented here allows users to experiment with var-
ious model and run parameters and visualize the results. For this
purposeMatlab offersmany advantages over traditional program-
ming languages such as FORTRAN or C. As an interpreted language,
Matlab requires no compilation, is platform-independent and
allows easy interaction with the algorithm during runtime.
Matlab also provides an array of tools to visualize results from
computations including a full graphical user interface (GUI). These
advantages make the package a better choice for our purposes, as
discussed above, than regular ‘‘production’’ codes, despite a large
discrepancy in computational speed.We provide several examples
and include more questions in the exercises, which illustrate the
usage of the code, key algorithmic features, how to compute vari-
ous properties in the Hubbard model, and how to generalize it for
other applications. As a pedagogical tool, the package can be used
in combination with the lecture notes in Ref. [1] and references
therein.

The remainder of the paper is organized as follows. In Section 2
we introduce the formalism and various technical ingredients of
the CPMC method, and notations used in the rest of this paper. In
Section 3 the actual algorithm is outlined in detail. An overview
of the software package and instructions is given in Section 4,
including a list of exercises. In Section 5, we briefly discuss
the computational cost and comment on the relation between
this package and one written in a more conventional numerical
programming language. Then in Section 6, we present several
applications which illustrate algorithmic issues; benchmark the
method; discuss CPMC calculations of the kinetic energy, potential
energy and double occupancy; and report several new CPMC
results on the spin- and charge-gaps. We summarize in Section 7
and include a list of some usefulMatlab commands in Appendix.

2. Method and notation

The ground-state CPMC algorithm has two main components.
The first component is the formulation of the ground state pro-
jection as an open-ended importance-sampled random walk. This
random walk takes place in Slater determinant space rather
than configuration space like in Green’s function Monte Carlo
(GFMC) [14,15]. There are two ways to perform this random walk.
Traditional projector QMC uses an exact unconstrained projection
that suffers from exponential scaling in computational cost with
increasing system size due to the sign problem. In contrast, CPMC
achieves polynomial scaling by using an approximate constrained
projection, which becomes exact if the trial wave function (used
to impose the constraint) is identical to the ground state. Further-
more, importance sampling makes CPMC a more efficient way to
do projector QMC in many cases. The second component is the
constraint of the paths of the random walk so that any Slater
determinant generated during the random walk maintains an ap-
propriate overlap with a known trial wave function |ψT⟩. This con-
straint eliminates the sign decay, making the CPMC method scale
algebraically instead of exponentially, but introduces a systematic
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error in the algorithm. These two components are independent of
each other, and can be used separately. We call the combination of
these two components the ground-state CPMC algorithm. This sec-
tion only briefly reviews the application of CPMC to the Hubbard
model. The reader is referred to Refs. [1,2] and references therein
for a discussion of the Hubbard model implementation and gener-
alization of this theory to other, more realistic Hamiltonians.

2.1. Slater determinant space

The CPMC method works with a chosen one-particle basis. A
Born–Oppenheimer Hamiltonianwith standard electronic interac-
tions does not mix the spins. We assume in the discussion below
that the Hamiltonian conserves total Ŝz , and that the number of
electrons with each spin component is fixed. It is straightforward
to treat a Hamiltonian that does mix the spin species [16].

We will use the following notation:

• M: the number of single-electron basis states, e.g. the number
of lattice sites in the Hubbard model.
• |χi⟩: the ith single-particle basis state (i = 1, 2, . . . ,M).
• cĎi and ci: creation and annihilation operators for an electron in
|χi⟩. ni ≡ cĎi ci is the corresponding number operator.
• N: the number of electrons. Nσ is the number of electrons with

spin σ (σ =↑ or ↓). As expected, Nσ ≤ M .
• ϕ: a single-particle orbital. The coefficients in the expansion
ϕ =


i ϕi|χi⟩ =


i c

Ď
i ϕi|0⟩ in the single particle basis {|χi⟩}

can be conveniently expressed as anM-dimensional vector:
ϕ1
ϕ2
...
ϕM

 . (1)

• |φ⟩: a many-body wave function which can be written as
a Slater determinant. Given N different single-particle or-
bitals, we form a many-body wave function from their anti-
symmetrized product:

|φ⟩ ≡ ϕ̂
Ď
1 ϕ̂

Ď
2 · · · ϕ̂

Ď
N |0⟩ (2)

where the operator ϕ̂Ď
m ≡


i c

Ď
i ϕi,m creates an electron in the

mth single-particle orbital as described in Eq. (1).
• Φ: an M × N matrix which represents the coefficients of the

orbitals used to construct a Slater determinant |φ⟩:

Φ ≡


ϕ1,1 ϕ1,2 · · · ϕ1,N
ϕ2,1 ϕ2,2 · · · ϕ2,N
...

...
...

ϕM,1 ϕM,2 · · · ϕM,N

 . (3)

Each column of thismatrix is anM-dimensional vector and rep-
resents a single-particle orbital described by Eq. (1). For brevity,
we will subsequently refer to this M × N matrix as a Slater de-
terminant.
• |Ψ ⟩ (upper case): amany-bodywave functionwhich is not nec-

essarily a single Slater determinant, e.g. the many-body ground
state |Ψ0⟩.

We list several properties of a Slater determinant. First, for any
two non-orthogonal Slater determinants, |φ⟩ and |φ′⟩, it can be
shown that their overlap integral, which is a number, is given by:

⟨φ|φ′⟩ = det

ΦĎΦ ′


, (4)

whereΦĎ is the conjugate transpose of the matrixΦ .
Second, the operation on any Slater determinant in Eq. (2) by
the exponential of a one body operator

B̂ = exp


M
ij

cĎi Uijcj


(5)

simply leads to another Slater determinant [17]:

B̂|φ⟩ = φ̂′ Ď1 φ̂
′ Ď
2 · · · φ̂

′ Ď
N |0⟩ ≡ |φ

′
⟩ (6)

with φ̂′ Ďm =


j c
Ď
j Φ
′

jm and Φ ′ ≡ eUΦ , where the matrix U is
formed from elementsUij. Since B ≡ eU is anM×M squarematrix,
the operation of B̂ on |φ⟩ simply involvesmultiplying eU , anM×M
matrix, toΦ , an M × N matrix.

As mentioned above, operations on the spin-up sector do not
affect the spin-down sector and vice versa. Thus it is convenient to
represent each Slater determinant as two independent spin parts:

|φ⟩ = |φ↑⟩ ⊗ |φ↓⟩. (7)

The corresponding matrix representation is

Φ = Φ↑ ⊗ Φ↓ (8)

where Φ↑ and Φ↓ have dimensions M × N↑ and M × N↓,
respectively. The overlap between any two Slater determinants is
simply the product of the overlaps of individual spin determinants:

⟨φ|φ′⟩ =

σ=↑,↓

⟨φσ |φ′σ ⟩ = det

(Φ↑)ĎΦ ′

↑

· det


(Φ↓)ĎΦ ′

↓

. (9)

Any operator B̂ described by Eq. (5) acts independently on the two
spin parts:

B̂|φ⟩ = B̂↑|φ↑⟩ ⊗ B̂↓|φ↓⟩. (10)

Each of the spin components of B̂ can be represented as an
M ×M matrix. Applying B̂ to a Slater determinant simply involves
matrix multiplications for the ↑ and ↓ components separately,
leading to another Slater determinant |φ′⟩ as in Eq. (6) i.e. the result
is B↑Φ↑ ⊗ B↓Φ↓. Unless specified, the spin components of B̂ are
identical i.e. B↑ = B↓ (note the absence of a hat on B to denote the
matrix of the operator B̂).

2.2. The Hubbard Hamiltonian

The one-band Hubbard model is a simple paradigm of a system
of interacting electrons. Its Hamiltonian is given by

Ĥ = K̂ + V̂ = −t

⟨ij⟩σ

(cĎiσ cjσ + cĎjσ ciσ )+ U


i

ni↑ni↓, (11)

where t is the hoppingmatrix element, and cĎiσ and ciσ are electron
creation and destruction operators, respectively, of spin σ on site
i. The Hamiltonian is defined on a lattice of dimensionM =


d Ld.

The lattice sites serve as the basis functions here, i.e., |χi⟩ denotes
an electron localized on the site labeled by i. The notation ⟨ ⟩ in Eq.
(11) indicates nearest-neighbors. The on-site Coulomb repulsion is
U > 0, and themodel only has two parameters: the strength of the
interactionU/t and the electron density (N↑+N↓)/M . In this paper
we will use t as the unit of energy and set t = 1.

The difference between the Hubbard Hamiltonian and a general
electronic Hamiltonian is in the structure of the matrix elements
in K̂ and V̂ . In the latter, K̂ is specified by hopping integrals of
the form Kij, while V̂ is specified by Coulomb matrix elements
of the form Vijkl, with i, j, k, l in general running from 1 to M . In
terms of the CPMC method, the structure of K̂ makes essentially
no difference. The structure of V̂ , however, dictates the form of
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the Hubbard–Stratonovich transformation (see Section 2.3.1). For
the Hubbard interaction, the resulting one-body propagators turn
out to be real, as shown below, while for the general case complex
propagators arise and cause a phase problem [1].

2.3. Ground-state projection

Wewill focus on ground-state calculations in this paper. (Finite-
temperature generalizations to the grand-canonical ensemble
also exist [18,19].) The ground-state wave function |Ψ0⟩ can be
obtained from any trial wave function |ΨT⟩ that is not orthogonal
to |Ψ0⟩ by repeated applications of the ground-state projection
operator

Pgs = e−∆τ(Ĥ−ET) (12)

where ET is the best guess of the ground-state energy. That is, if the
wave function at the nth time step is |Ψ (n)

⟩, the wave function at
the next time step is given by

|Ψ (n+1)
⟩ = e−∆τ(Ĥ−ET)|Ψ (n)

⟩. (13)

With a small ∆τ , the second-order Trotter approximation can
be used:

e−∆τ Ĥ = e−∆τ(K̂+V̂ ) ≈ e−∆τ K̂/2e−∆τ V̂ e−∆τ K̂/2. (14)

The residual Trotter error can be removed by, for example, extrap-
olation with several independent runs of sufficiently small∆τ val-
ues. We illustrate this technique in an exercise in Section 4.2.2.

2.3.1. The Hubbard–Stratonovich transformation
In Eq. (14), the kinetic energy (or, more generally, one-body)

propagator B̂K/2 ≡ e−∆τ K̂/2 has the same form as Eq. (5). How-
ever, the potential energy propagator e−∆τ V̂ does not. A Hubbard–
Stratonovich (HS) transformation can be employed to transform
e−∆τ V̂ into the desired form. In the Hubbardmodel, we can use the
following:

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2

xi=±1

p(xi) eγ xi(ni↑−ni↓), (15)

where γ is given by cosh(γ ) = exp(∆τU/2). We interpret p(xi) =
1/2 as a discrete probability density function (PDF) with xi = ±1.

In Eq. (15), the exponent on the left, which comes from the
interaction term V̂ on the ith site, is quadratic in n, indicating the
interaction of two electrons. The exponents on the right, on the
other hand, are linear inn, indicating twonon-interacting electrons
in a common external field characterized by xi. Thus an interacting
system has been converted into a non-interacting system living
in fluctuating external auxiliary fields xi, and the summation over
all such auxiliary-field configurations recovers the many-body
interactions. The special form of HS for the Hubbard interaction is
due to Hirsch [20]. The linearized operator on the right hand side
in Eq. (15) is the spin (ni↑ − ni↓) on each site.

In this paper and in the code, we will use the discrete spin
decomposition in Eq. (15). There exist other ways to do the HS
transformation, e.g. based on the Gaussian integral:

eÂ
2
=

1
√
2π


∞

−∞

dx e−x
2/2

e
√
2x Â. (16)

There is also a charge version of the discrete HS transformation
involving the linearized operator ni↑+ni↓, the total charge on each
site.

Different forms of the HS transformation can have different
efficiencies in different situations. In particular, preserving the
appropriate symmetries of the system can significantly reduce the
statistical fluctuations and reduce the error from the constrained-
path approximation [7].

Since we represent a Slater determinant as individual spin
determinants in Eq. (7), it is convenient to spin-factorize Eq. (15)
as

e−∆τUni↑ni↓ =

xi=±1

p(xi)

b̂↑V (xi)⊗ b̂↓V (xi)


(17)

where the spin-dependent operator b̂σV (xi) on the ith lattice site is
defined as

b̂σV (xi) = e−[∆τU/2−s(σ ) γ xi]c
Ď
iσ ciσ (18)

and s(↑) = +1 and s(↓) = −1. The related operator b̂V(xi) (i.e.
without σ ) includes both the spin up and spin down parts. Below
we will use the corresponding symbol without hat (bV) to denote
the matrix representation of the operator (b̂V) associated with that
symbol.

The potential energy propagator e−∆τ V̂ over all sites is the
product of the propagators e−∆τUni↑ni↓ over each site:

e−∆τ V̂ =

x⃗

P(x⃗)

σ=↑,↓

B̂σV (x⃗) (19)

where x⃗ = {x1, . . . , xM} is one configuration of auxiliary fields
over all M sites and B̂σV (x⃗) =


i b̂
σ
V (xi) is the x⃗-dependent product

of the spin-σ propagators over all sites. The overall PDF here is
P(x⃗) =


i p(xi) =

 1
2

M
, to be distinguished from the PDF p for

one individual auxiliary field xi in Eq. (17).
Now the projection operator in Eq. (12) can be expressed

entirely in terms of operators in Eq. (5)

Pgs ≈ e∆τET

x⃗

P(x⃗)

σ=↑,↓

B̂σK/2B̂
σ
V (x⃗)B̂

σ
K/2. (20)

As noted in Eq. (10),BK/2 has an↑ and a↓ component, each ofwhich
is an M × M matrix. Applying each B̂K/2 to a Slater determinant
|φ⟩ simply involvesmatrix multiplications with thematrix BK/2 for
the ↑ and ↓ components ofΦ separately, leading to another Slater
determinant |φ′⟩ as in Eq. (6). The same holds for BV.

2.3.2. A toy model for illustration
Let us take, for example, a simple one-dimensional four-site

Hubbard model with N↑ = 2, N↓ = 1 and open boundary con-
dition. The sites are numbered sequentially.

First let us examine the trivial case of free electrons i.e. U = 0.
We can write down the one-electron Hamiltonian matrix, which is
of dimension 4× 4:

H =

 0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0

 . (21)

Direct diagonalization gives us the eigenstates of H from which
we immediately obtain the matrix Φ0 for the ground-state wave
function |ψ0⟩:

Φ0 =

0.3717 −0.6015
0.6015 −0.3717
0.6015 0.3717
0.3717 0.6015

⊗
0.3717
0.6015
0.6015
0.3717

 (22)

where the first matrix contains two single-particle orbitals (two
columns) for the two ↑ electrons and the second matrix contains
one single-electron orbital for the one ↓ electron. Each single-
electron orbital is an eigenvector of H .
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The matrixΦ0 represents |φ0⟩ in the same way that Eq. (3) rep-
resents Eq. (2). Of course, the solution above is also the restricted
Hartree–Fock solution to the interacting problem.Wewill often use
Φ0 as the trial wave function in CPMC below.

Next we consider the interacting problem, with U > 0. Apply-
ing the HS transformation of Eq. (15) to Eq. (14), we have

Pgs =

e∆τET−∆τU(N↑+N↓)/2


×



x⃗

P(x⃗) BK/2 ·

eγ x1 0 0 0
0 eγ x2 0 0
0 0 eγ x3 0
0 0 0 eγ x4

 · BK/2

⊗ BK/2 ·

e−γ x1 0 0 0
0 e−γ x2 0 0
0 0 e−γ x3 0
0 0 0 e−γ x4

 · BK/2

 (23)

where x⃗ = {x1, x2, x3, x4} and P(x⃗) =
 1
2

4
. This is just Eq. (20)

specialized to a four-site lattice.

2.4. Random walk in Slater determinant space

The first component of the CPMC algorithm is the reformulation
of the projection process as branching, open-ended random walks
in Slater determinant space (instead of updating a fixed-length
path in auxiliary-field space).

Let us define BV(x⃗) =

σ BσV (x⃗) as we have done for b̂V. Apply-

ing the HS-transformed propagator in Eq. (20) to one projection
step in Eq. (13) gives

|φ(n+1)⟩ = e∆τET

x⃗

P(x⃗)

B̂K/2B̂V(x⃗)B̂K/2


|φ(n)⟩. (24)

In the Monte Carlo (MC) realization of this iteration, we
represent the wave function at each stage by a finite ensemble of
Slater determinants, i.e.

|Ψ (n)
⟩ ∝


k

|φ
(n)
k ⟩ (25)

where k labels the Slater determinants and an overall normaliza-
tion factor of the wave function has been omitted. These Slater de-
terminants will be referred to as random walkers.

The iteration in Eq. (24) is achieved stochastically by MC
sampling of x⃗. That is, for each random walker |φ(n)k ⟩, we choose
an auxiliary-field configuration x⃗ according to the PDF P(x⃗) and
propagate the determinant to a new determinant via |φ(n+1)k ⟩ =

B̂K/2B̂V(x⃗)B̂K/2|φ
(n)
k ⟩.

We repeat this procedure for all walkers in the population.
These operations accomplish one step of the random walk. The
new population represents |Ψ (n+1)

⟩ in the sense of Eq. (25),
i.e. |Ψ (n+1)

⟩ ∝


k |φ
(n+1)
k ⟩. These steps are iterated until sufficient

data has been collected. After an equilibration phase, all walkers
thereon are MC samples of the ground-state wave function |Ψ0⟩

and ground-state properties can be computed.Wewill refer to this
type of approach as free projection. In practice, branching occurs
because of the re-orthonormalization of the walkers, which we
discuss below in Section 2.8. We emphasize that the statistical
error bar can be reduced significantly with more ‘‘optimal’’ forms
of HS transformations to extend the reach of free-projection
calculations (see e.g., Refs. [1,7]).

2.5. Importance sampling

To improve the efficiency of Eq. (24) and make it a practical
and scalable algorithm, an importance sampling scheme [1,14,15]
is required. In the procedure just described above, no information
is contained in the sampling of x⃗ on the importance of the resulting
determinant in representing |Ψ0⟩. Computing the mixed estimator
of the ground-state energy

Emixed ≡
⟨φT|Ĥ|Ψ0⟩

⟨φT|Ψ0⟩
(26)

requires estimating the denominator by


k⟨φT|φk⟩ where |φk⟩

are random walkers after equilibration. Since these walkers are
sampled with no knowledge of ⟨φT|φk⟩, terms in the summation
over |φk⟩ can have large fluctuations that lead to large statistical
errors in the MC estimate of the denominator, thereby in that of
Emixed.

With importance sampling, first we define an importance
function:

OT(φk) ≡ ⟨φT|φk⟩, (27)

which estimates the overlap of a Slater determinant |φ⟩ with the
ground-state wave function (approximated here by a trial wave
function). As in Diffusion Monte Carlo (DMC) [21], we also assign
a weight wk = OT(φk) to each walker. This weight is initialized to
unity for all walkers since in the initial ensemble, |φ(0)k ⟩ = |φT⟩ for
all k.

We then iterate a formally different butmathematically equiva-
lent version of Eq. (24):

|φ(n+1)⟩ ←
x⃗

P(x⃗)B̂(x⃗)|φ(n)⟩ (28)

where

B̂(x⃗) = B̂K/2B̂V(x⃗)B̂K/2. (29)

The walkers |φ(n)⟩ are now sampled from a new distribution. They
schematically represent the ground-state wave function by:

|Ψ (n)
⟩ ∝


k

w(n)
|φ
(n)
k ⟩

OT(φ
(n)
k )

, (30)

in comparison to Eq. (25).
The modified function P(x⃗) in Eq. (28) is P(x⃗) = M

i p(xi),
where the probability for sampling the auxiliary-field at each
lattice site is given by

p(xi) = OT(φ
(n)
k,i )

OT(φ
(n)
k,i−1)

p(xi) (31)

where

|φ
(n)
k,i−1⟩ = b̂V (xi−1) b̂V (xi−2) . . . b̂V (x1) |φ

(n)
k ⟩ (32)

is the current state of the kth walker, |φ(n)k ⟩, after its first (i − 1)
fields have been sampled and updated, and

|φ
(n)
k,i ⟩ = b̂V (xi)|φ

(n)
k,i−1⟩ (33)

is the next sub-step after the ith field is selected and the walker
is updated. Note that in the notation above |φ(n)k,0⟩ = |φ

(n)
k ⟩ and

|φ
(n)
k,M⟩ = |φ

(n+1)
k ⟩. As expected, P(x⃗) is a function of both the

current and future positions in Slater-determinant space. Further,P(x⃗) modifies P(x⃗) such that the probability of sampling x⃗ is
increased when x⃗ leads to a determinant with larger overlap
with |φT⟩ and is decreased otherwise. In each p(xi), xi can only
take the value of +1 or −1 and can be sampled by a heatbath-
like algorithm: choosing xi from the PDF p(xi)/Ni where the
normalization factor is

Ni ≡p(xi = +1)+p(xi = −1), (34)
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and carrying a weight for the walker

w
(n)
k,i = Niw

(n)
k,i−1, (35)

in which we have used the same notation as in Eqs. (32) and (33).
The ratio of the overlaps in Eq. (31), involving a change of only one
site (or even a few sites if desired), can be computed quickly using
the Sherman–Morrison formula, as shown in the code. The inverse

of the overlapmatrix

(ΦT)

ĎΦ
(n)
k

−1
is kept and updated after each

xi is selected.
It should be pointed out that a significant reduction in computa-

tional cost is possible in the present code. Because the free-electron
trial wave function is used here, the overlap matrix can be trivially
updated after each application of B̂K/2. In the code, however, the
update is still carried out explicitly in order to allow for a more
general form of the trial wave function.

We note that, for a general continuous auxiliary-field, the
importance sampling can be achieved by a force bias [1,4,22]. The
above discrete version can be viewed as a two-point realization of
the continuous case.

2.6. The sign problem and the constrained path approximation

2.6.1. The sign problem
The sign problem occurs because of the fundamental symmetry

between the fermion ground state |Ψ0⟩ and its negative−|Ψ0⟩ [23].
This symmetry implies that, for any ensemble of Slater deter-
minants {|φ⟩} which gives a Monte Carlo representation of the
ground-state wave function, there exists another ensemble {−|φ⟩}
which is also a correct representation. In other words, the Slater
determinant space can be divided into two degenerate halves (+
and−) whose bounding surface N is defined by ⟨Ψ0|φ⟩ = 0. This
surface is in general unknown. Except for some special cases [20],
walkers do cross N in their propagation by Pgs, causing the sign
problem. At the instant such a walker lands on N , the walker will
make no further contribution to the representation of the ground
state at any later time because

⟨Ψ0|φ⟩ = 0 H⇒ ⟨Ψ0|e−τH |φ⟩ = 0 for any τ . (36)

Paths that result from such a walker have equal probabilities of
being in either half of the Slater determinant space [1]. Computed
analytically, they would cancel and make no contribution in the
ground-state wave function. However, because the random walk
has no knowledge of N , these paths continue to be sampled
(randomly) in the random walk and become Monte Carlo noise.

To eliminate the decay of the signal-to-noise ratio, we impose
the constrained path approximation. It requires that each random
walker at each step have a positive overlap with the trial wave
function |φT⟩:

⟨φT|φ
(n)
k ⟩ > 0. (37)

This yields an approximate solution to the ground-statewave func-
tion, |Ψ c

0 ⟩ =


φ |φ⟩, in which all Slater determinants |φ⟩ satisfy
Eq. (37). Note that from Eq. (36), the constrained path approxima-
tion becomes exact for an exact trial wave function |ψT⟩ = |Ψ0⟩.
The constrained path approximation is easily implemented by re-
defining the importance function in Eq. (27):

OT(φk) ≡ max{⟨φT|φk⟩, 0}. (38)

This prevents walkers from crossing the trial nodal surface N and
entering the ‘‘−’’ half-space as defined by |φT⟩.Wenote that impos-
ing Eq. (37) is fundamentally different from just discarding the neg-
ative contributions in the denominator of Eq. (26); the constrained
path condition results in a distribution of walkers that vanishes
smoothly at the interface between the ‘‘+’’ and ‘‘−’’ parts of the
determinant space. The use of a finite ∆τ causes a small disconti-
nuity which is a form of Trotter error in the constraint; this error
can be further reduced [24].

2.6.2. Twist boundary condition and the phase problem
Our simulations are carried out in supercells of finite sizes. For

most quantities that we wish to calculate, the periodic boundary
condition (PBC) causes large finite-size effects, often compounded
by significant shell effects [3]. In order to reduce these effects and
reach the thermodynamic limit more rapidly, it is more effective
to use the twist boundary condition (TBC) and average over the
twist angles [3,25] (TABC). Under the TBC, the wave function
Ψ (r1, r2, . . . , rN) gains a phase when electrons hop around lattice
boundaries:

Ψ (. . . , rj + L, . . .) = eiL·2Ψ (. . . , rj, . . .), (39)

where L is the unit vector along L and the twist angle 2 =

(θx, θy, θz, . . .) is a parameter with θd ∈ (−π, π] for d = x, y,
z, . . . . It is implemented straightforwardly as a modification to
the matrix elements in the K̂ part of the Hamiltonian. A twist
is equivalent to shifting the underlying momentum space grid
by (θx/Lx, θy/Ly, θz/Lz, . . .). Symmetry can be used to reduce the
range of2. One could either choose to have a special grid of2 val-
ues [11] or choose them randomly [3,25]. In the illustrations we
will use the latter. The QMC results are averaged, and the MC er-
ror bar will be the combined statistical errors from the random 2

distribution and from each QMC calculation for a particular 2.
With a general twist angle, the AFQMC method will have a

‘‘phase problem’’ instead of the sign problem described above.
This is because the hopping matrix elements in K̂ now have
complex numbers which make the orbitals in the random walkers
complex. The stochastic nature of the random walk will then lead
to an asymptotic distribution which is symmetric in the complex
plane [1,4]. For each walker |φ⟩, instead of a +|φ⟩ and −|φ⟩ as in
the sign problem, there is now an infinite set {eiθ |φ⟩} (θ ∈ [0, 2π ])
from which the random walk cannot distinguish.

The phase problem that occurs in the present case is a ‘‘milder’’
form of the most general phase problem, because here the phases
arise from the one-body hopping term instead of the two-body
interaction term. The latter takes place in a long-range Coulomb
interaction, for example. In that case, the phase problem is con-
trolled with the phaseless or phase-free approximation [1,4].
When the phase only enters as a one-body boundary condition,
the stochastic auxiliary-fields are not directly coupled to complex
numbers. A simple generalization of the constrained-path approx-
imation suffices [3]: at each step of propagation, the randomwalk-
ers are required to satisfy the constraint

Re


⟨φT|φ

(n+1)
k ⟩

⟨φT|φ
(n)
k ⟩


> 0 (40)

where |φ(n)k ⟩ and |φ
(n+1)
k ⟩ are the current and proposed walkers.

Note that Eq. (38) is a special case of Eq. (40) because ⟨φT|φ
(0)
k ⟩ > 0

and all overlaps are real when K̂ is real. We emphasize that, when
the HS transformation leads to complex one-body propagators as
in the case of realistic electronic problems, an extra step is required
to ‘‘importance-transform’’ the propagators using the phase of the
overlap [1,4].

2.6.3. Systematic error from the constrained-path approximation, and
its reduction and removal

Most applications have used a single-determinant |ψT⟩ taken
directly from a Hartree–Fock (HF) or density-functional theory
(DFT) calculations. In the Hubbard model, the restricted HF wave
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Fig. 1. Illustration of the sign problem. The blue and red curves show the energy
during a projection from τ = 0 to τ = 7.5 with and without the constraint,
respectively. The dashed black line shows the exact result. The CP error bars are
too small to be seen. To improve clarity, only every other CP energy measurements
are shown for τ > 2.6. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

function is the same as the free-electron wave function, while
the unrestricted HF wave function breaks spin-symmetry and
allows, for example, antiferromagnetism and spin-density-wave
states [26]. A large number of benchmarks have been carried out
with these wave functions [1,7].

Fig. 1 illustrates the effectiveness of the constrained path
approximation. The system is a 4 × 4 lattice with 7 spin-↑ and
7 spin-↓ electrons, U = 4 and 2 = (0.02π, 0.04π). The free-
projection (FP) run exhibits growing statistical fluctuations as a
function of projection time, indicative of the sign problem. With
the constraint, CPMC fluctuations are always smaller with the
same amount of computational cost, and they are independent of
projection time. The CPMC results converge to a value below the
exact result (horizontal line).

Multi-determinant trial wave functions can reduce the system-
atic error because they are better variational wave functions [27].
Usingwave functions that restore symmetries of the systemcan re-
duce the systematic error significantly [7]. The symmetry restora-
tion can be either in the form of a multi-determinant trial wave
function or from symmetry projection [16]. For example, using a
10-determinant symmetry trial wave function can reduce the sys-
tematic error in the CPMC result for the system in Fig. 1 with peri-
odic boundary condition by a significant factor [7].

Recently, it has been demonstrated [7,8,28] that free-projection
and release-constraint calculations allow systematic removal
of the constrained-path bias by ‘‘lifting’’ the constraint (and
bringing back the sign problem). This offers another avenue for
systematically improvable AFQMC calculations.

2.7. Energy measurement

CPMC-Lab uses the mixed estimator in Eq. (26) for the ground-
state energy which, for an ensemble {|φ⟩}, is given by:

Emixed =


k
wk EL [φT, φk]

k
wk

(41)

where the local energy EL is:

EL [φT, φ] =
⟨φT|Ĥ|φ⟩
⟨φT|φ⟩

. (42)

This quantity can be easily evaluated for any walker φ as follows.
For any pair of non-orthogonal Slater determinants |φT⟩ and |φ⟩,
we can calculate the one-body equal-time Green’s function as:

⟨cĎjσ ciσ ⟩ ≡
⟨φT|c

Ď
jσ ciσ |φ⟩

⟨φT|φ⟩
=

Φσ
[ (Φσ

T )
ĎΦσ
]
−1(Φσ

T )
Ď

ij . (43)

This immediately enables the computation of the kinetic en-
ergy term


φT

−t⟨ij⟩σ cĎiσ cjσ
φ. The potential energy term

φT

Ui c
Ď
i↑ci↑c

Ď
i↓ci↓

φ does not have the formof Eq. (43), but can
be reduced to that form by an application of Wick’s theorem:

⟨cĎi↑ci↑c
Ď
i↓ci↓⟩ = ⟨c

Ď
i↑ci↑⟩⟨c

Ď
i↓ci↓⟩ + ⟨c

Ď
i↑ci↓⟩⟨ci↑c

Ď
i↓⟩

= ⟨cĎi↑ci↑⟩⟨c
Ď
i↓ci↓⟩. (44)

The reduction to the last line occurs because the ↑ and ↓ spin
sectors are decoupled in both |φT⟩ and |φ⟩. (This is not the case
in a pairing [29] or generalized Hartree–Fock wave function [16].
The former is the desired form for U < 0. The latter can be used
to improve the quality of the trial wave function for U > 0, and is
necessary if the Hamiltonian contains spin–orbit coupling.)

The mixed estimator for the energy arises naturally from
importance sampling, and reduces the statistical variance of the
computed result. A drawback of the mixed estimator is that the
ground-state energy obtained in AFQMC under the constrained
path approximation is not variational [1]. The mixed estimators
for observables which do not commute with the Hamiltonian are
biased. The back-propagation technique can be used to obtain pure
estimates [2,22].

2.8. Other implementation issues

2.8.1. Population control
As the random walk proceeds, some walkers may accumulate

very large weights while some will have very small weights.
These different weights cause a loss of sampling efficiency because
the algorithm will spend a disproportionate amount of time
keeping track of walkers that contribute little to the energy
estimate. To eliminate the inefficiency of carrying these weights,
a branching scheme is introduced to ‘‘redistribute’’ the weights
without changing the statistical distribution. In such a scheme,
walkers with large weights are replicated and walkers with small
weights are eliminated with the appropriate probability.

However, because branching might cause the population to
fluctuate in an unbounded way (e.g. to grow to infinity or to perish
altogether), we perform population control to eliminate this insta-
bility at the cost of incurring a bias when the total weight of the
walkers is modified. This bias can be reduced by carrying a history
of overall weight correction factors. However, the longer this his-
tory is included in the energy estimators, the higher the statisti-
cal noise. In this package we use a simple ‘‘combing’’ method [30],
which discards all history of overall weight normalizations. We
note that there exist more elaborate approaches [2,21,30], for
example, keeping a short history of the overallweight renormaliza-
tion. The length of the history to keep should be a compromise be-
tween reducing bias (long) and keeping statistical fluctuation from
becomingmuch larger (short). The effect of population control and
how to extrapolate away the bias are illustrated in the Exercises.

2.8.2. Re-orthonormalization
Repeated multiplications of BK/2 and BV to a Slater determi-

nant in Eq. (24) lead to numerical instability, such that round-off
errors dominate and |φ(n)k ⟩ represents an unfaithful propagation
of |φ(0)k ⟩. This instability is controlled by periodically applying the
modified Gram–Schmidt orthonormalization to each Slater deter-
minant. For each walker |φ⟩, we factor its corresponding matrix
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Fig. 2. The GUI tab that allows the user to set all the parameters of the calculation. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
as Φ = QR where R is a upper triangular matrix and Q is a ma-
trix whose columns are orthonormal vectors representing the re-
orthonormalized single-particle orbitals. After this factorization,Φ
is replaced by Q and the corresponding overlap OT by OT/ det(R)
because Q contains all the information about the walker |φ⟩while
R only contributes to the overlap of |φ⟩.With importance sampling,
only the information in Q is relevant and R can be discarded.

3. Algorithm

(1) For each walker, specify its initial state. Here we use the trial
wave functionΦT as the initial state and assign the weightw
and overlap OT each a value of unity.

(2) If the weight of a walker is nonzero, propagate it via BK/2 as
follows:
(a) Perform the matrix–matrix multiplication

Φ ′ = BK/2Φ (45)
(recall the convention that BK/2 denotes the matrix of
B̂K/2) and compute the new importance function
O′T = OT(φ

′). (46)
(We can also work in momentum space, e.g., by using fast
Fourier transforms.)

(b) If O′T ≠ 0, update the walker, weight and OT as
Φ ← Φ ′ , w← w O′T/OT, OT ← O′T. (47)

(3) If the walker’s weight is still nonzero, propagate it via BV(x⃗)
as follows
(a) Compute the inverse of the overlap matrix

Oinv =


Φ

Ď
TΦ

−1
. (48)

(b) For each auxiliary field xi, do the following:
(i) Computep(xi)
(ii) Sample xi and update the weight as

w← w[p(xi = +1)+p(xi = −1)]. (49)
(iii) If the weight of the walker is still not zero, propagate

the walker by performing the matrix multiplication
Φ ′ = bV(xi)Φ (50)
and then update OT and Oinv.

(4) Repeat step 2.
(5) Multiply the walker’s weight by a normalization factor:

w← w e∆τET (51)

where ET is an adaptive estimate of the ground state energy
E0 and is calculated using the mixed estimator in (41).
(6) Repeat steps 2–5 for all walkers in the population. This forms
one step of the random walk.

(7) If the population of walkers has achieved a steady-state
distribution, periodically makemeasurements of the ground-
state energy.

(8) Periodically adjust the population of walkers. (See Sec-
tion 2.8.1.)

(9) Periodically re-orthonormalize the columns of thematricesΦ
representing the walkers. (See Section 2.8.2.)

(10) Repeat this process until an adequate number of measure-
ments have been collected.

(11) Compute the final average of the energy measurements and
the standard error of this average and then stop.

4. Package overview and instructions

The package can be run either directly from the command line
or from the GUI. The GUI requires Matlab R2010b (version 7.11)
and above but the non-interactive scripts can run on any version
of Matlab. The GUI is meant to minimize the initial learning
process and should be used only for small systems and short
runs. Its visualization can be used to help understand how the
random walkers propagate and how the auxiliary-fields build in
the electron correlation. Figs. 2 and 3 show the program’s GUI
which allows users to input model parameters such as the number
of sites and electrons, the twist condition, the interaction strength
and the hopping amplitude. The run parameters allow virtually
any combination that the user chooses to configure the AFQMC
run, including the number of walkers, the time step ∆τ , the
numbers of blocks for equilibration and measurement, the size of
the blocks, the intervals for carrying out population control and
stabilization and so on. There are two tabs. The first gives the
GUI for run parameters, while the second shows the progress of
the calculation. Under the second tab, the total denominator of
the mixed estimator and the calculated energy are monitored as
a function of the imaginary time τ .

The run could also be set in a more detailed visualization
mode. The structure of the randomwalker orbitals is illustrated by
plotting the orbital coefficients, alongwith the electronic ‘‘density’’
⟨niσ ⟩ for each spin at site i, defined as ⟨niσ ⟩ = ⟨φk|n̂iσ |φk⟩ for the kth
walker. Fig. 3 shows this feature, inwhich a snapshot is highlighted
for a four-site calculation.
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(a) With visualizations.

(b) Without visualizations.

Fig. 3. The GUI for visualizing the calculation. These figures show (a) a detailed visualization mode which shows the walkers’ orbitals and electronic density, with the
currently propagated walker highlighted in yellow, (b) the normal run mode with the detailed visualizations turned off. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4.1. Files in the package

This package contains ten source files for the CPMC program,
one GUI program, and two scripts as samples for running the
program:

CPMC_Lab.m is the main driver of the package. For every time
step, it calls stepwlk.m to propagate the walkers.
When appropriate, it calls measure.m to measure the
energy, stlbz.m to re-orthonormalize the walkers or
pop_cntrl.m to do population control. After the end
of the random walk, it calculates the final average and
standard error of the energy and saves the results to a file.

initialization.m runs validation.m to conduct a basic
check on the input parameters and initializes internal
quantities, e.g. the total number of sites and electrons. It
forms the free-electron trial wave function and creates
the initial population of walkers.

validation.m verifies the basic validity of user inputs, as
mentioned above.

H_K.m creates the one-body kinetic Hamiltonian.
stepwlk.m carries out one step of the random walk by calling
halfK.m, V.m and halfK.m again.

halfK.m propagates a walker by e−∆τ K̂/2
V.m carries out importance sampling site by site to select the

auxiliary fields, and propagates a walker by e−∆τ V̂ .
measure.m computes the energy of a walker.
stblz.m orthonormalizes walkers by the modified Gram–

Schmidt algorithm.
pop_cntrl.m carries out population control by a simple-

combing method.
sample.m is a script that allows users to set input parameters.
batchsample.m is a script that loops over multiple sets of

parameters.
GUI.m launches the GUI of the package. It is a stand-alone file

that is independent of all the other files in the package
and contains all the subroutines of a QMC run.

4.2. Exercises

Below is a list of suggested exercises. They are designed as
a step-by-step guide for the reader to gain a basic familiarity
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Table 1
Parameters and exact results for sample runs.

system (kx,ky) ⟨K⟩ ⟨V ⟩ E0

2× 1 1 ↑ 1 ↓ (+0.0819,+0.0000) −3.54222 1.09963 −2.44260
4× 1 2 ↑ 2 ↓ (+0.0819,+0.0000) −3.29161 1.17491 −2.11671
8× 1 4 ↑ 4 ↓ (+0.0819,+0.0000) −7.65166 3.04575 −4.60591
2× 4 3 ↑ 2 ↓ (+0.0819,−0.6052) −13.7778 1.65680 −12.1210
3× 4 3 ↑ 3 ↓ (+0.02, 0.04) −15.2849 1.29311 −13.9918
4× 4 5 ↑ 5 ↓ (0, 0) −22.5219 2.94100 −19.58094
with the code and learn the most essential features of a CPMC or
AFQMC calculation. The concepts covered in the first few exercises
are universal, such as auto-correlation time, statistical errors,
equilibration time, Trotter errors, population control bias, and so
on. It is essential to master them before any production runs. The
other exercises are more open-ended. Their goal is to help the
reader gainmore insight and facilitate real applications. In the next
section, several example applications are shown.

4.2.1. Running the sample script sample.m
The first assignment is to run a ‘‘sample’’. To run the script

sample.m, put all the files in this package directly under the
current directory. Type ‘‘sample’’ (without quotes) and hit Enter
to run the script. The main function CPMC_Lab will return the
values of E_ave and E_err to the workspace, and save more
detailed data in the ∗.mat file named by sampledatafile. The
main function will also plot a figure of the energies from each
measurement block, E(i_blk) vs. i_blk × N_blksteps ×
deltau.

Save the figure via the File menu and explain its behavior.
Obtain a rough estimate for how much imaginary time is
needed to equilibrate. This interval, τeq, corresponds to the input
deltau×N_blksteps×N_eqblk. Nowmodify the parameters
to include an ‘‘equilibration’’ phase. Do statistical analysis on
the ‘‘measurement’’ phase or do a loop over different values
of N_blksteps. We provide with the package a sample batch
run script, batchsample.m, that loops over multiple sets of
parameters. Determine theminimum length of eachmeasurement
block (N_blksteps) necessary to obtain uncorrelated results and
a reliable estimate of the statistical error.

Now modify the parameters using the correct N_eqblk and
N_blksteps for a few ‘‘standard’’ runs. Table 1 gives the exact
energies for several systems (U/t = 4) for comparison.

4.2.2. Controlling the basic run parameters
Let us next study the behaviors of the Trotter error and

population control bias:

1. Run the code for a few different values of ∆τ (deltau),
e.g. 0.025, 0.05, and 0.1, and examine the convergence of the
energies as a function of deltau. Note that the number of steps
in each block, N_blksteps, the frequency of measurement,
itv_em (and optionally itv_modsvd and itv_pc) should be
adjusted to obtain comparable statistics.

2. Run the code for several values of population size (N_wlk),
e.g. 10, 20, 40, and 80, and examine the population bias
(systematic error vs. the population size). Note that with fewer
walkers in the population, more blocks will be needed to get
comparable statistical accuracy.

4.2.3. Calculating E_K and E_V separately
The program only outputs the total ground state energy. The

mixed-estimate for other observables is biased, as mentioned
earlier. The standard way to calculate unbiased expectation values
is to use the back-propagation technique (see Refs. [22,31]). Let us
calculate the kinetic energyE_K and the potential energyE_V in an
alternative way. From the Hellman–Feynman theorem, we have

E_V =


ψ(U)

U dH
dU

ψ(U) = U
dE
dU
. (52)

Obtain dE
dU by finite difference with three separate total energy

calculations at (U−∆U),U , and (U+∆U)with a small∆U . Higher-
order finite difference methods can also be used for more accurate
results as illustrated in Section 6. Some exact results at U = 4 are
listed in Table 1 for comparison. For the two-dimensional system in
the last three rows, obtain a resultwith sufficiently small statistical
error bars to examine the systematic error from the constrained
path approximation.

4.2.4. The hydrogen molecule
Let us study the system of two interacting fermions on two

sites: N_up = 1, N_dn = 1, Lx = 2 and Ly = 1. We set
tx = 1 and kx = 0 (ty and ky will be ignored when Ly = 1).
Study the properties of the system as the interaction strength U
is varied (while keeping t = 1). This can be viewed as a crude
model (minimal basis) for breaking the bond in a H2 molecule. As
the distance between the two protons increases, the interaction
strength U/t increases.

1. Run the QMC code at different values of U and compare your
results with the exact solution:

E =
1
2


U −


U2 + 64


. (53)

2. Plot E_K and E_V vs. U. Explain their behaviors.
3. Obtain the double occupancy ⟨n1↑n1↓⟩ (see Section 4.2.3). From

it, derive the correlation function ⟨n1↑n2↓⟩. Explain its behavior
vs. U.

4.2.5. Ground-state energy of a chain
Let us study the half-filled Hubbard model in one dimension

and how the energy converges with respect to system size. Run
the program for a series of lattice sizes (e.g. 2 × 1, 4 × 1, 6 × 1,
8×1, . . .), each averaging over a set of random twist angleskx. Plot
the energy per site vs.1/L2, and examine its convergence behavior.
(In Section 6 a detailed example is given.)

4.2.6. Addition to the program: other correlation functions
Program in the mixed estimator of some observables, e.g. the

one-body density matrix ⟨cĎiσ cjσ ⟩, the spin–spin correlation func-
tion ⟨SiSj⟩ (where Si = ni↑ − ni↓), and the charge–charge correla-
tion function ⟨(ni↑+ni↓)(nj↑+nj↓⟩). Calculate the mixed estimate
for E_K and E_V and compare with the results from Section 4.2.3.

5. Computational speed

As mentioned in Section 1, a major drawback of the Matlab
package is that it is significantly slower than a standard production
code written in FORTRAN or C. This is outweighed by the
advantages in pedagogical value and in providing the clearest
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(a) Total energy. (b) Potential energy (inset: double occupancy ⟨n↑n↓⟩).

(c) Kinetic energy.

Fig. 4. The total, potential and kinetic energies vs. the interaction strength U for a 16-site ring with 5 spin-↑ and 7 spin-↓ electrons. CPMC results (red error bars) are
compared with exact diagonalization (ED) (blue solid curves). Restricted (cyan) and unrestricted (magenta) Hartree–Fock results have also been drawn for comparison in
panel (a). The inset in panel (b) shows the double occupancy ⟨n↑n↓⟩. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
algorithmic foundation. From this foundation, the users could
build a CPMC or phase-free AFQMC code tailored toward their
own applications. As illustrated in the next section, significant
applications can be carried with the presentMatlab code as is.

Here we give some rough comparisons between the Matlab
code and a production code in FORTRAN. To provide an idea of the
timing difference, we describe two examples. For the calculation
at U = 4 in a 4 × 4 lattice with 5 spin-↑ and 5 spin-↓ electrons
(the same number of lattice sites as Fig. 4), the FORTRAN code
takes 1 min to run on an Intel Core i7-2600 3.40 GHz processor,
compared to 32 min for the Matlab code. Scaling up the system
size to a 128×1 lattice with 65 spin-↑ and 63 and spin-↓ electrons
(the largest system in Fig. 6), the FORTRAN code requires 186 min
while the Matlab code takes 460 min. The parameters for both
runs are deltau = 0.01, N_wlk = 1000, N_blksteps = 40,
N_eqblk = 10, N_blk = 50, itv_modsvd = 5, itv_pc = 40
and itv_Em = 40.

Using OpenMP, Matlab can automatically speed up compu-
tations in a multi-core environment. Furthermore, Matlab users
with Matlab’s Parallel Computing Toolbox installed can easily
parallelize the code by distributing the propagation of individual
walkers over multiple processor cores. This is done by (1) chang-
ing the main for loop in stepwlk.m into a parfor loop and (2)
opening a pool of n parallel Matlab workers with the command
matlabpool(‘open’, n) before the equilibration phase begins in
CPMC_Lab.m.

The computational cost of the CPMC and phase-free AFQMC
methods scales algebraically, roughly as the third power of system
size. (Different pieces of the code scale as different combinations of
N andM .) The memory required to run CPMC-Lab is proportional
to the product of (the basis size)× (the number of electrons)× (the
number of random walkers). The random walkers are only loosely
coupled. The approach is ideally suited for a distributed massively
parallel environment [32].

6. Illustrative results

Fig. 4 compares energy calculations by CPMC-Lab against exact
diagonalization (ED) results for a one-dimensional 16-siteHubbard
model with 5 spin-↑ and 7 spin-↓ electrons. The parameters of the
run are N_wlk = 5000, deltau = 0.01, N_blksteps = 40,
N_blk = 150, N_eqblk = 30, itv_pc = 5, itv_Em = 40
and itv_modsvd = 1. The potential energy is obtained by the
Hellman–Feynman method of Eq. (52), where the derivative dE

dU is
calculated using the five-point stencil. The kinetic energy is simply
the difference between the total and potential energies.

In one-dimension, the CPMC method is exact. As seen in the
figure, the agreement between CPMC and ED results is excellent.
As the interaction strength U increases, the kinetic energy also
increases because more electrons are excited to occupy higher
single-particle levels. The potential energy is non-monotonic as
a consequence of two opposing tendencies. Double occupancy
⟨n↑n↓⟩ (shown in the inset) is rapidly reduced as the interaction
is increased. On the other hand, the growing value of U increases
the potential energy linearly.

We next compute ground-state properties of the one-dimen-
sional Hubbard model in the thermodynamic limit. Since our QMC
calculations are performed in finite-sized supercells, it is impor-
tant to reduce finite-size effects and obtain better convergence as
M → ∞. In Fig. 5, we show the calculated ground-state energy
per site vs. the supercell size at half-filling for U = 4. We com-
pare two sets of data, one with PBC (Γ -point) and the other with
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Fig. 5. Ground-state energy per site vs. inverse square lattice size for half-filled
one-dimensional lattices at U = 4. Results from PBC (blue) and TABC (red) are
shown. The lattice size in PBC ranges from 2 to 40 and those in TABC are from 2
to 128. The red solid line in the inset is the best fit of the TABC data (for lattice
sizes 4 to 128) while the dashed blue line is to guide the eye. The inset shows a
closeup view (from 12 to 128 sites) of the convergence to the thermodynamic limit.
The exact result is shown in green for comparison. For clarity, the error bar of the
intercept in the inset is offset to the left of the green symbol for exact result. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

twist-averaging boundary condition (TABC) as discussed in Sec-
tion 2.6.3. In the TABC runs, each data point is obtained by av-
eraging over random samples of the twist angle 2. That is, the
kx values are chosen randomly from the interval (−1, 1], corre-
sponding to θx ∈ (−π, π]. The number of kx points for each
lattice size is chosen to keep the product (lattice size) ×
(number of kx values) roughly constant (∼80 in this case)
while maintaining a minimum of 4 points.

In the PBC runs, we added a small twist angle kx whenever
the electron configuration is open-shell in order to break the
degeneracies in the single-particle energy levels (see Section 2.6.3).
The run parameters for this and subsequent results are identical to
those used in Fig. 4 except for N_wlk = 1000, itv_pc = 40 and
itv_modsvd = 5.

The PBC data is seen to exhibit large finite-size effects, with
a zig zag pattern reflecting differing trends for closed-shell and
open-shell systems.We reiterate that this behavior is not from any
numerical problem; rather it is the nature of the exact ground-state
eigenvalue of theHamiltonian for these finite supercells under PBC.
The TABC data, on the other hand, is smooth andmonotonic. As the
supercell size increases, the two sets of data approach each other,
and converge to the same limit. The best fit of the TABC data to
a straight line is shown in the figure. The fit is given by E0/M =
−0.57361 − 0.63192/M2, leading to a thermodynamic value of
−0.5736(1), to be compared to the exact result of−0.573729 from
the Bethe ansatz [33].

We next compute the spin and charge excitation gaps. The spin
gap is defined as the energy difference between the present system
and that with one spin flipped:

∆s = E0

N↑ + 1,N↓ − 1


− E0


N↑,N↓


, (54)

where E0

N↑,N↓


is the total ground-state energy for a finite

supercell with N↑ spin-↑ and N↓ spin-↓ electrons.
Fig. 6 shows the result of the spin gap for the one-dimensional

Hubbard model at half-filling, for U = 4, as a function of inverse
lattice size. TABC is used in these calculations, choosing a random
set of twist values to calculate each total energy in Eq. (54). The
parameters of the run are identical to those in Fig. 4.

As the lattice size increases, the calculated spin gap converges
smoothly. A linear fit to all the data yields an asymptotic value of
∆s = 0.0036(80), consistentwith the Haldane conjecture of a zero
spin gap [34,35].
Fig. 6. The calculated spin gap vs. inverse lattice size for one-dimensional Hubbard
model at half-filling,U = 4. The red dashed line is drawn to guide the eye. The inset
shows a closeup view of the convergence from12 to 128 sites. The blue solid line is a
linear fit of the data for lattice sizes 8 to 128. For clarity, the error bar of the intercept
in the inset is offset to the left of the vertical axis at 1/M = 0. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 7. The calculated charge gap vs. inverse lattice size for the one-dimensional
Hubbard model at half-filling, U = 4. The lattice size ranges from 2 to 128. The
two sets of data are obtained according to∆′c (blue) and∆c (red), respectively. The
dashed curves in the main figure are drawn to guide the eye. The inset shows a
closeup view at larger supercell sizes. The red and blue solid lines represent linear
fits to the corresponding subsets of datawith lattice sizes 16 to 128. The exact result
of 1.28673 in the thermodynamic limit is indicated in green for comparison. For
clarity, in the inset, the error bars for the two intercepts are offset to the left of the
green symbol for exact result. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The charge gap is defined by the addition and removal energy:

∆c = E0

N↑ + 1,N↓


+ E0


N↑ − 1,N↓


− 2 E0


N↑,N↓


, (55)

where in the present case N↑ = N↓ = M/2. We also calculate,
alternatively

∆′c = E0

N↑ + 1,N↓ + 1


− E0


N↑,N↓


− U, (56)

which we expect to give a consistent result based on the analytic
result relating the chemical potentials to U [33]. The results of the
calculated charge gap at U = 4 are shown in Fig. 7.

As the lattice size increases from 2 to 128 (right to left), both
types of charge gap converge toward a finite value. A linear fit to the
data of∆c yields a charge gap of 1.266(21) in the thermodynamic
limit, consistent with the exact analytic result of 1.28673 [33].

7. Summary

In this paper we described CPMC-Lab, an open-source Matlab
program for studying the many-body ground state of Hubbard-
like models in any dimension, and for learning the constrained-
path and phase-free auxiliary-field Monte Carlo methods. The
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package illustrates the constrained-path Monte Carlo method,
with a graphical interface. The ground-state energy is calculated
using importance sampling and implementing the algorithmic
details of a total energy calculation. This tool allows users to
experiment with various model and run parameters and visualize
the results. It provides a direct and interactive environment to
learn the method and study the code with minimal overhead for
setup. Furthermore, it provides a foundation and template for
building a CPMC or phase-free AFQMC calculation for essentially
any interactingmany-fermion systemwith two-body interactions,
including ab initio calculations in molecules and solids.
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Appendix. Some usefulMatlab commands

• Tab completion is available in the Matlab command window
for the names of functions and scripts (either built-in, on the
search path or in the current directory) and variables in the
current workspace.
• Ending a command with semicolon suppresses its output.
• To display the value of the variable variablename:

variablename

• Todisplay a brief description and the syntax forfunctionname
in the command window:

help functionname

• To call a function:

[out1,out2 ,...]=myfunc(in1,in2,...)

• To run the script scriptname:

scriptname

• To set display format to long (15 decimal places) instead of the
default short (4 decimal places):

format long

• To load the variables from a *.mat file into the workspace:

load filename.mat

or double click the *.mat file or select Import Data from the
workspace menu
• To remove all variables from the workspace:

clear

• To generate an m× n matrix containing pseudorandom values
drawn from the standard uniform distribution on (0, 1):

rand (m, n)

• To create a new individual figure window on the screen:

figure

• To close all the figure windows:

close all
• To plot each column in the (real) matrix Ydata vs. the index of
each value:

plot(Ydata)

• To plot each column in the matrix Ydata vs. Xdata:

plot(Xdata,Ydata)

• To plot each vector in Yn vs. the corresponding vector Xn on the
same axes:

plot(X1,Y1,X2,Y2,...,Xn,Yn)

• To plot Ydata vs. Xdatawith symmetric error bars 2*Err(i)
long:

errorbar(Xdata,Ydata,Err)

• To hold the plot so that subsequent plotting commands add to
the existing graph instead of replacing it:

hold all

• To put a title string at the top-center of the current axes:

title(‘string ’)

• To label the x-axis:

xlabel(‘string ’)

and similarly for the y-axis.
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