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Diffusive behavior of states in the Hubbard-Stratonovitch transformation
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The Hubbard-Stratonovitch auxiliary-field approach to projection of the ground state of an in-
teracting fermion system from a trial state is examined. It is shown that the method is equivalent to
solving a differential equation with diffusion, drift, and branching terms on the manifold of normal-
ized Slater determinants. Explicit general expressions are given for the coefticients of the diffusion
equation in terms of the Hubbard-Stratonovitch fields. The form of the equation is somewhat simi-
lar to that obtained in the continuum Green's-function Monte Carlo method, although its interpre-
tation and relation to the physical many-body problem is quite different. The character of the rep-
resentation of the many-body ground state arising in the auxiliary-field projection approach is dis-
cussed within this framework. The diffusion process is normally found to concentrate the states
representing the ground state near the classical mean-field solutions. The consequences of this pic-
ture of the auxiliary-field approach for the "fermion minus-sign" problem in this context are dis-
cussed, and some conclusions are reached concerning the range of validity of a recently suggested
approximation where minus signs are ignored.

I. INTRODUCTION

The idea of projecting out the ground-state wave func-
tion of a quantum-mechanical system by evolution from a
trial wave function 4, according to Schrodinger s equa-
tion in imaginary time is an old one. The exponential de-
cay of the amplitude of higher-energy states in the
imaginary-time evolution

lim exp( 13H)I'4l, &
= l—im +exp( —Pe;)I'0; &(O';I+& &P~ oo P~ oo

1

=e p( —pE )I+ &&+ I+, &

leaves only the lowest state %o which is not orthogonal to
the trial-state 4, in the infinite-P limit. As a method of
calculating the ground-state properties of interacting
many-body systems, this projection approach has been
very fruitful. In the Monte Carlo simulation of the imag-
inary time evolution, two techniques have principally
been used, viz. , the Green's-function or diffusion Monte
Carlo approach, and, more recently, the auxiliary-field
approach. " The essential difference between the two
methods is the manner in which the propagator
exp( PH) is evalua—ted. As we will see, the way we
represent the propagator directly determines, in turn,
how the resulting ground state will be represented.
Indeed, while it is true that the many-body state follows
the same propagation in any exact representation of the
propagator, different ways of realizing the propagation
will give rise to very different representations of the pro-
pagated many-body state. The specific nature of the rep-
resentation determines how we ultimately evaluate the
expectation values of physical quantities of interest.

The purpose of this work is to understand some aspects
of the representation that arises in the auxiliary-field
method as it has been applied to the imaginary-time pro-
jection of fermion ground states of discrete lattice mod-

els. Our principal result is the demonstration that a
weight function which arises in this representation obeys
a diffusion equation. We can then exploit our general
knowledge of the qualitative behavior of diffusion equa-
tions to obtain information about the character of that
representation of many-body states which is built into the
auxiliary-field approach.

Although the diffusion Monte Carlo approach to con-
tinuum interacting fermion systems and the auxiliary-
field approach to fermions on a lattice appear to have a
very tenuous relationship with one another, our result re-
veals a surprising formal analogy between the two prob-
lems. We emphasize at the outset that this is a formal
analogy only, that very important differences remain be-
tween the two approaches, and that care must be exer-
cised in invoking the analogy. This is especially true in
considering the relationship between the formal represen-
tation and the original physical many-body problem. For
example, we will see that the "fermion sign problems" as
they occur in these two different contexts are direct for-
mal analogues of one another within the diffusion theory,
although their relationship to the many-body problem is
very different.

In the continuum Green's-function approach, the fact
that the kinetic energy for an M-particle system is of the
form

M
T=gV', ,

allows the Schrodinger equation in imaginary time ~ to be
viewed as a diffusion equation. The propagator for the
diffusion equation is simulated by a continuous random
walk in the configuration space of the particles (a 3M-
dimensional space). The potential V(which must be diag-
onal in the coordinate-space representation and includes
external potential and interaction terms) gives rise to
"branching" of walkers (i.e., producing copies of them-
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selves) at a rate proportional to —V. In practice, an im-
portant aspect of the Green's-function Monte Carlo ap-
proach is the use of a guiding (or trial) function which
gives much better statistical estimators of physical quan-
tities. While this modification introduces a drift term
into the equation, it does not alter the basic idea of realiz-
ing the imaginary-time Schrodinger equation as a
diffusion process with branching.

Green's-function Monte Carlo methods have also been
applied more recently to lattice problems. ' ' However,
in these cases, the imaginary-time propagation does not
reduce to a continuous diffusion process, although (for
appropriate Hamiltonians) the Green s function is posi-
tive and can be simulated by a random walk with branch-
ing in the (discrete) configuration space of the particles.
In the rest of this paper we will not consider these
discrete-space versions and, in further discussion of the
Green's-function Monte Carlo approach, we will mean
specifically the original continuum version for the
imaginary-time Schrodinger equation.

The auxiliary-field approach is very different in spirit
from the G-reen's-function method. Here we make expli-
cit use of the fact that the interacting Hamiltonian is a
sum of one- and two-body terms. The form of the one-
body terms is not important; in particular, no use is made
of any special form of the kinetic energy or external po-
tential. The two-body terms are assumed to be a sum of
squares of one-body operators. These two-body interac-
tion terms are replaced, using the Hubbard-Stratonovitch
transformation, ' ' with Gaussian random auxiliary
fields x which act as time-dependent external potentials
on the particles

exp( l3H) = f dG—[x]U„(l3,0), (3)

where U„(l3,0) is the propagator over the imaginary-time
interval [O,P] for an independent-particle Hamiltonian
which includes the action of the auxiliary fields x on the
particles and JdG[x] which gives a Gaussian distribu-

tion of x. (These fields can be considered as mediating
fields for the two-body interaction in somewhat the same
way as the phonon fields mediate the electromagnetic in-
teraction in electrodynamics. ) In this way, the interact-
ing problem is replaced by an integral over an ensemble
of noninteracting systems in a set of random ~-varying
external fields. We will discuss in detail below how this is
achieved. It is worth pointing out at this stage that the
Hubbard-Stratonovitch transformation for a particular
many-body problem is not unique"' and that different
choices may have very different numerical behavior.

The auxiliary-field approach has been used for some
time in calculating finite-temperature properties for the
grand canonical ensemble. ' Here the basic quantity to be
calculated is the grand sum for the many-body Hamil-
tonian at a given inverse temperature P, i.e., the trace of
the propagator exp[ I3(H —pX)] over —a complete set of
fermion states. Again, the many-body propagator is ex-
pressed in the form given in Eq. (3) as an integral of
independent-particle propagators and the grand sum is
the integral of the traces of these propagators. The point
of crucial importance' to the utility of this approach is
that the trace over all fermion states of each propagator

U„(P,O) can be written very compactly as the deter-
minant of the operator I+ U„(l3,0) considered as a ma-
trix on the space of single-particle wave functions. This
"tracing out of the fermion variables" hides the fact that
each member of a complete set of Slater-determinant trial
states is being propagated in a manner exactly paralleling
the projection method, where only one fermion state
ql, ) is propagated. ' Our principal results can, in fact,

be applied almost without modification to the grand
canonical formulation at large /3.

A. Representation of states

For the purposes of this work, we wish to concentrate
on the way in which the propagated many-body state in
Eq. (I) is represented as a result of the representation of
the propagator given in Eq. (3). We will assume that the
initial state is an antisymmetrized product of single-
particle orbitals; in other words, a single Slater deter-
minant. (In the practical implementation of the
auxiliary-field projection approach, this assumption is
essential. ) The important observation now is that a
single Slater determinant propagated by any
independent-particle Hamiltonian always remains as a
single Slater determinant; ' each single-particle orbital
in the antisyrnmetrized product just propagates indepen-
dently. The propagated many-body state in Eq. (I) is
then automatically represented as an integral of Slater
determinants, one for each choice of auxiliary fields

~4(P) &= JdG[x]~iII„&, (4)

The distribution of auxiliary fields thus gives rise to a dis
tribution of Slater determinants This distr. ibution of
Slater determinants in turn gives rise to a distribution of
matrix elements ('P, ~O 4„) in the course of evaluating
the physical expectation value of an operator O.

The central question addressed in the present work is
the following: "How does this distribution of deter-
minants evolve with imaginary time?" The answer, which
we derive below, is that it obeys a diffusionlike equation.
This emerges when we change the coordinates labeling
the propagated Slater determinants from the auxiliary-
field variables x to appropriately chosen intrinsic coordi-
nates + for the normalized Slater determinants them-
selves. Then the propagated state is written as an in-
tegral over these intrinsic coordinates, rather than over
the auxiliary fields

e(i3) ) = J f(qI;l3)~%')de .

(We incorporate the norm of ~~II„) into the weight func-
tion f and ~%') is normalized. ) The object of study then
becomes the weight or distribution function f(4;/3),
rather than the auxiliary fields themselves. However, we
note that, although we have hidden the fields in the nota-
tion of Eq. (6), their coupling to the particles still deter-
mines the evolution of the function f. At /3=0, the dis-

where ~%'„) is the Slater determinant propagated in fields
x:

%„)—:U„(P,O)~%, ) .
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B. Measurement and the sign problem

In the practical implementation of the auxiliary-field
projection method, quantities are calculated by evaluat-
ing the overlap of the projected state l@(/3) ) with the ini-
tial trial state l%, ). For example, for sufficiently large p,
the ground-state energy E,o is calculated as

J dG[x](e, lale„)
& e, lale(p) )

& ~, l~(p) &

()
J'dG[x]& +, I+„&

Unfortunately, although ( +, l N(p) ) must be positive, be-
cause the fields x are time dependent, the matrix elements
(%, l%„) are not always positive. Except in special cir-
cumstances, the average sign

f dG [x]('e, lip„)
cr(p) = (8)

fdG[x]l &p le„& I

of these matrix elements has been found to become very
small for large p, leading to the ill-conditioned statistical
estimators which constitute the "minus-sign problem. "

tribution is a 6 function at the trial state +, . We will find
that, although the evolution of the many-body state
l@(/3)) depends only on the original many-body Hamil-
tonian, the evolution of the weight function f depends on
the particular choice of Hubbard-Stratonovitch transfor-
mation and that f is different for different choices. This
is not too surprising when we realize that the basis func-
tions (viz. , all Slater determinants) used to represent @ in
Eq. (6) form a vastly overcomplete set.

The representation of the ground state is governed by
the asymptotic behavior of f (4;/3) is /3~ oo. The natu-
ral question of what determinants predominate in the
representation of N translates into the question of where
f is peaked. Perhaps not surprisingly, we find that f is
often strongly concentrated near the classical mean-field
solutions.

Conventional discussions of auxiliary-field methods
focus on a matrix element or trace' as a scalar func-
tional of the fields. The essential viewpoint (admittedly
an unconventional one) advocated in the present work is
from "inside" such a matrix element. From this perspec-
tive, we see the Hubbard-Stratonovitch transformation as
a formal mapping of the original many-body problem
onto a stochastic dynamical process on the set of Slater
determinants. The intuitive picture behind the derivation
of a diffusionlike equation of motion for f (iP;~) is as fol-
lows. Given an initial Slater determinant V„aparticular
choice of auxiliary fields induces (via the corresponding
Hubbard-Stratonovitch propagator) a "walk" of
through the set of Slater determinants. (It also changes
the normalization of 4, giving rise to "branching" terms. )

The Gaussian random selection of auxiliary fields will
then give rise to a random walk of 4 through the set of
Slater determinants. It is a familiar fact that, in general,
random-walk behavior of a set of particles gives rise to a
diffusion equation for their density. ' In this case, the
"particles" are the points 4 and the density is the func-
tion f (~P;r).

In the grand canonical approach, determinants of the
operator I+ U„(p, O) replace these matrix elements in ex-
pressions analogous to Eqs. (7) and (8), and share their
lack of positivity as functionals of x(r). Comparable
rates of decay of o(p) have been found for both grand
canonical and projection approaches in numerical stud-
ies. ' ' We emphasize that the sign problem is a conse-
quence of the representation leading to Eq. (7), not of the
original many-body problem in Eq. (1).

Using the equivalent form of the propagated state
given in Eq. (6), the average sign in the auxiliary-field
projection method can be reexpressed as an average over
our distribution f:

ff(e;p)(e, le)dq
o(p)=

ff(+;p)l&+, I+)Id+
(9)

The integrals in the numerator and denominator of Eq.
(9) couple to different symmetries of the function f; the
numerator projects out the "odd" component of f and
the denominator the "even" component (we will define
later precisely what "odd" and "even" mean). We will
see that the odd components of f always decay exponen-
tially with /3 at a rate greater than that for the even com-
ponents. The difference between these two rates equals
the rate of exponential decay of the sign o (p) for large p.
(For exceptional problems with special symmetries, such
as the half-filled Hubbard model with a spin-coupled aux-
iliary field, the odd and even components may decay at
the same rate and the rate of decay of the sign is zero. )

The auxiliary-field projection approach for interacting
fermion systems attracted considerable attention recently
when an intriguing suggestion was made ' by Sorella
et al. , in the application of the method to the two-
dimensional Hubbard model. They proposed that the
sign problem that occurs in this method can be circum-
vented with negligible (or in certain cases, zero) error in
the calculated physical quantities. This is achieved by re-
placing by their absolute value the matrix elements which
occur in Eq. (7) in summing over auxiliary fields. The
variance of statistical estimators in the method is thereby
greatly reduced. Surprisingly, this counter-intuitive sug-
gestion has yielded remarkably accurate results in certain
cases. Although the initial promise of this approach has
not been entirely borne out in all cases, and its results are
not uniformly satisfactory, ' ' a better understanding of
the successes of the approximation in terms of the Hamil-
tonian of the system and the Hubbard-Stratonovitch
transformation used is clearly an important goal, as is the
identification of situations where it is likely to fail.

A word about minus-sign problems in the continuum
Green's-function Monte Carlo method for fermions: In
the Green's-function approach, ' ' the minus signs occur
essentially because the lowest-energy solution of the
diffusion equation on the space of configurations of the
system is nodeless. This solution is the boson ground
state. However, in solving fermion problems, we wish to
confine our attention to antisymmetric wave functions
only. In the "release-node" approach, minus signs occur
when walkers cross the nodes of a reference antisym-
metric guiding wave function. The number of minus
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signs and the number of plus signs (i.e., the number of
"positive walkers" and "negative walkers" ) increase ex-
ponentially compared to the difference between them,
which is the number we need to calculate. The rate of
this exponential increase equals the difference between
the boson and fermion ground-state energies, or alterna-
tively, the difference between the energy of the nodeless
solution of the diffusion equation and that of the lowest
antisymmetric solution.

Although it is well known" that fermion Monte Carlo
simulations of both the auxiliary-field and Green's-
function type generally have problems with "minus
signs, " it has not been clear if a precise relationship exists
between the minus signs which occur in the two ap-
proaches. In either case, the existence of terms with neg-
ative sign gives rise to very poor statistics in the quanti-
ties we wish to evaluate. Of course, a "sign problem" is
built into any representation of a real wave function by a
linear combination of preordained functions. For a given
state, the latter can always be chosen once the state is
known so that their coefficients are non-negative. The
problem is that of deciding beforehand. In particular, if
the coefficients are regarded as a probability distribution
on the index space, attention to this point becomes man-
datory. Both Green's-function Monte Carlo and
auxiliary-field projection Monte Carlo exacerbate this
problem by starting with an overcomplete basis —all of
configuration space rather than 1/Xf of it in the Green's-
function approach, and all Slater determinants rather
than a finite set of them in the auxiliary-field approach.
However, none of these observation tells us whether the
average sign will be finite, algebraically small, or ex-
ponentially small in the limit of large imaginary-time
propagation.

We will show in this paper that there is a very close
mathematical connection between the behavior of the
two approaches which can be understood in terms of a
general property of diffusion equations, viz. , that their
lowest-energy solutions are nodeless. The connection be-
tween the diffusion and the original many-body problem
is very different in each case, as is the space in which the
diffusion process takes place. In the case of the Green's-
function approach, the diffusion occurs in the
configuration space of the particles and arises because of
the V form of the kinetic energy in the Schrodinger
equation. In the auxiliary-field approach, the diffusion
occurs in the set of M-particle normalized Slater deter-
minants and arises because Gaussian Auctuations of the
auxiliary fields induce a random walk on the set of Slater
determinants. The nodeless solution has a direct physical
interpretation (viz. , the boson ground state) in the
Green's-function approach but does not, to our
knowledge, have any such interpretation in the
auxiliary-field approach. In either case, the average sign
decays exponentially, but the rate of decay is governed by
very different factors in the two approaches.

Incidentally, we note that the noninteracting problem
(i.e., no two-body terms) has a very special status within
the auxiliary-field approach; it is the case for which the
coupling of the auxiliary fields to the particles vanishes
and the Hubbard-Stratonovitch ensemble of noninteract-

ing systems reduces to a single system, viz. , the real
noninteracting system, and there is no longer any sto-
chastic aspect to the approach. This is quite different
from the status of the noninteracting problem in the
Green's-function Monte Carlo approach; there the ran-
dom walk of the particles continues to be effective but
now each particle walks independently of the others.
From the point of view of implementation as a stochastic
process, the analogue of the noninteracting limit in the
auxiliary-field approach is the infinite-mass limit in
Green's-function Monte Carlo.

The rest of this paper is organized as follows. In Sec.
II, we study the auxiliary-field projection in the specific
case of the two-size Hubbard model. This serves both to
introduce some notation and also to give a graphical pic-
ture of propagation in the set of normalized Slater deter-
minants. Turning to the properties of the auxiliary-field
approach in a general context, some relevant geometrical
properties of the set of normalized Slater determinants as
a manifold are discussed in Sec. III, and in Sec. IV a
diffusionlike equation is derived for the propagation of
states in the auxiliary fields. We discuss some conse-
quences of this diffusion picture in Sec. V and outline the
general conclusions of this study in Sec. VI. The form of
some coefficients in the diffusion equation are derived in
the Appendix.

II. EXAMPLE: THE TWO-SITE HUBBARD MODEL

Let us take as a simple example the case of the Hub-
bard model of a paramagnetic hydrogen molecule; i.e.,
the Hubbard model with two sites and two electrons with
opposite spin. We take this example because the relevant
set of Slater determinants can easily be visualized, and yet
it displays a nontrivial behavior in the evolution of the
states. This will serve to introduce both the auxiliary-
field method and the geometry of the set of normalized
Slater determinants in a specific case, and also to focus on
some of the features of the problem which will be treated
in a more abstract general setting subsequently. The
Hamiltonian of the system is

H= t g (c, cz—+c2 c, )+U g n;&n;),
i =1,2

where o. and i are spin and site indices, c and n are the
creation and number operators, and t and U are the hop-
ping and on-site interaction terms, respectively. We will
assume a repulsive on-site interaction so that U) 0. In
the auxiliary-field approach, we express the interaction
term n; &n; &

as a square of one-body terms plus some addi-
tional one-body terms:

n
&

n
&

= —
—,
' ( n t n& ) + ,' ( n

&
+ n

&

—) .—2

For the rest of the discussion, we will neglect the term

, (n 1+n() since it involv—es only a trivial shift in the
chemical potential and does not affect any of the dynam-
ics we are interested in. Thus, we rewrite the Hamiltoni-
an as

H= —t g (c, c2 +cz c, ) ——,'U g (n, & n,&)—
~= t, ( i =1,2 (12)
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For convenience, we define the quantities

HQ t g (C irrC2rr +C2~Clcr )
O. = T, l

(13)

and —x,.(/(25r)
dGI"]= II II

1=ii =1 2nkr
(20)

which includes all one-body terms in H, and

H; =&U (n;1 n—;i) (14)

is the Gaussian measure of the x fields on m time slices.
Note ' that each Hubbard-Stratonovitch propagator

acts on a Slater determinant of M states

exp( ilia ) =e—xp( b, rHQ ) —II exp (H; )
i =1,2

+O(br ) . (15)

for i = 1,2, whose squares give the two-body interactions
in H.

We now expand the propagator generated by this
Hamiltonian according to standard auxiliary-field ap-
proach. The many-body propagator exp( rH) —can be
written trivially as a product of propagators over short
"time slices, " each of length Aw. On each time slice
propagator by the product of the propagators for the in-
dividual terms in the Hamiltonian:

M
&=(MI) '" II ct*u;~0& (21)

to give another Slater determinant
~

111' ) =
~
u 1, . . . , uM ),

where we have used the general matrix notation for
many-body operators over an X-dimensional single-
particle space

X
C 4Q = C~Qj (22)

j=1
The action of U„(r,0) as a many-body operator is simply
to propagate each individual state u in the Slater deter-
minant with the one-body operator U„(&,0):

Thus, we obtain the Trotter expansion u~'= U„(r,0)e u (23)

exp( rH)= l—im II exp( b.rH)—
m oo 1=1

lim + exp( b, rHQ )—
m oo I =1

2

X + exp[ —,'b, r(H, ) ] (16)

exp( rH) = lim II—exp( b,rHQ)—
m oo I =1

where A~—=~/rn. In the Hubbard-Stratonovitch transfor-
mation, ' ' the two-body propagators are replaced by an
integral over auxiliary fields (which can be considered to
mediate the two-body interaction) by means of the fol-
lowing operator identity:

—x /(2hr)
exp[ —,'Ar(H;) ]=f exp( xH;) d—x .

oo 2m.b,r
We may now express our original many-body propagator
as the infinite time-slice limit of the integral over Gauss-
ian auxiliary fields Ix;1 ]

=x,
u 1

=cosei
~
11 ) +sine,

~
2 1 ) .

Similarly, the spin-down state can be written as

(24)

In this sense, the Hubbard-Stratonovitch transformation
replaces the interacting system with a noninteracting sys-
tem in a random time-varying field.

In practice, some finite number I of time slices is used
to approximate the infinite-m limit. Also, long-time
propagation of the states u; in the Slater determinant
tends to produce linear dependence in the propagated
wave functions u . This corresponds to a collapse into
the boson ground state. As was first suggested in Ref. 7,
this numerical instability can be simply avoided by fre-
quent reorthogonalization of the states u as they propa-
gate. This orthogonalization does not change the Slater
determinant represented by u and we will not refer to it
further.

Turning now to the set of normalized Slater deter-
minants, we consider specifically the paramagnetic, half-
filled two-site problem. We have two electrons, one with
spin up and the other with spin down. The spin-up state
u

&
is a linear combination of the two-site orbitals:

u i =cos02~ 11 & + sin02~21 ) .2 +
X Q f exp( x;1H;)—

i =1
—x. /(2hr)iI

X dxiI~2~6~
(18)= lim dG x U„~,O

m ~ oo

where

U„(&,0)= II exp( —b, rHQ) II exp( x, H, ) (19)—

Thus, the pair of angles (0„02) uniquely specifies a two-
particle, paramagnetic Slater determinant

~
u 1,u 1 ) for

the two-site problem. Since the Hubbard-Stratonovitch
Hamiltonian we are using has no spin-Aip terms in it, a
Slater determinant which starts with one state pure spin
up and another state pure spin down will remain so
throughout its evolution. Thus, we need only consider
the set of states described by the parameters (0, , 02).
Clearly, the following periodicities hold:

is the Hubbard-Stratonovitch propagator for a particular
choice Ix;1] of auxiliary fields which couple to the elec-
trons during the lth time slice through the operators H;,

~e(0, +~, 0, ) &
= —~~(0„0,) ),

l~(0„0,+ ))= —i~(0, , 0, ) &,

~+(0,+ir, e,+ir)) = ~%(0,, 0, )) .

(26a)

(26b)

(26c)
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We can restrict the values of (9&,gz) to the fundamental
diamond-shaped region D with the vertices (0, ~), (~,0),
(0, vr—), and ( vr—,0), as shown in Fig. 1, identifying op-
posite edges in accordance with Eq. (26c). It is important
that we always consider %' and —4' as separate points on
the set of normalized Slater determinants. Indeed, this
distinction will be crucial to the appearance of the
minus-sign problem in auxiliary-field fermion simula-
tions. (In general, we will denote the state ~+) in the
usual ket notation when we are considering it as a state in
the Hilbert space and as 4 when we are considering it as
a point on the manifold of normalized Slater deter-
minants. )

The point (0,0) represents the state where both parti-
cles are on site 1, and at (~/2, n/2) both particles are on
site 2, as denoted by the symbols in Fig. 1. The points
(n/2, 0) and (O, m/2) represent the ground states in the
infinite-U limit, where the particles are on opposite sites.
The ground state of the noninteracting system (U =0) is
the point (~/4, rr/4), where both the spin-up and spin-
down particles are in the symmetric combination of the
two sites (~ 1 ) +

~
2 ) ) /+2. Inversion of the parameter

space about the point (vr/4, n/4) (i.e., the transformation
9& +sr/2 9—&, gz~—n/2 gz) is equi—valent to swopping
sites 1 and 2. Reflection in the line 0&=02 is equivalent
to swopping spin-up and spin-down. The states along the
line gz —~/2 —9, (the dashed line in Fig. 1) have
particle-hole symmetry ' of the kind usually referred to
in connection with the half-filled Hubbard model, which,
in this two-site case, amounts to invariance under the
combined action of swopping spins and sites.

is given by the integral

l@(r)&=f f(g), gz', r)l+(9), gz))dg, dgz.
D

(27)

In this notation, the initial distribution is a 6 function:

f(g„gz;0)=6(9,—9, , )5( gz —gz, ), (28)

Shown in Fig. 2 is a sampling of the distribution f for

7T /2,
(0)
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o 0.01
0.'I

0.25
x Q 5

1,0

The evolution of an initial trial state 0', =0'(9&,gz, ) in
a particular choice of auxiliary fields can then be viewed
as a trajectory in the two-dimensional parameter space,
and the distribution of Slater determinants obtained from
the propagation of the initial state for a time ~ in the
Gaussian distribution (Eq. 20) of auxiliary fields Ix;I ]
gives a distribution f(g„gz,'r) of the parameters. The
many-body state

~C(r)) =exp( —rH)l+, &
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FIG. 1. The manifold of Slater determinants considered in
the two-site Hubbard model with two electrons of opposite spin.
The angles 0i and 0, are defined in Eqs. (24) and (25). The sym-
bols at particular points represent the states corresponding to
those points, as discussed in the text. Only the region
0~0& ~~/2, 0 0, ~w/2 is shown in Figs. 2 and 3. The dashed
line denotes the set of states with particle-hole symmetry in that
region.

FIG. 2. Propagation of states for the usual two-site Hubbard
model in the random auxiliary fields as a function of imaginary
time w for values of ~=0.01, 0.1, 0.25, 0.5, and 1.0. The hop-
ping coefficient t =1. The on-site repulsion V=4 in (a), and
U = 1 in (b). A representative set of points is sampled from the
distribution at each value of ~. The change in the overall nor-
malization of the distribution with ~ is not represented here.



43 DIFFUSIVE BEHAVIOR OF STATES IN THE HUBBARD- . . ~ 771

m'/2

0 0

0OP
00

o
0

0 0

00 0
0

o 8
0 0

0 0

00 0

0
00

g&0 00
dP 0

0
0

FIG. 3. The asymptotic distribution of states {this sample for
~=2) for the two-site Hubbard model with an asymmetric po-
tential on the sites. A potential of —1 is added on site 1. The
hopping coe%cient t = 1 and the on-site repulsion U =-4.

various values of r, starting from the point %(0,0) at
r =0. In Fig. 2(a), the on-site repulsion U =4, and in Fig.
2(b), U= 1. In the absence of interaction terms (i.e., for
U =0), the initial point would not spread out into a dis-
tribution, but rather drift as a single point along the line
t9i=Oz, eventually converging exponentially to the point
(~/4, vr/4), the ground state of the noninteracting system.
Interaction-induced diffusion spreads the initial point
around a set of hyperbolic "fronts" which advance,
driven by the drift term, towards the line 02=~/2 —0&.

A greater concentration of points towards the ends of the
line for U =4 is indicative of stronger Heitler-London-
like correlations.

The collapse of the distribution onto the diagonal line
for all values of the interaction parameter U is a conse-
quence of the particle-hole symmetry of the half-filled
Hubbard model. In general, such a collapse will be in-
dicative of a conservation law obeyed by all the
Hubbard-Stratonovitch fields and the noninteracting
Hamiltonian and is not generic for all systems. This is
demonstrated in Fig. 3, which shows the asymptotic dis-
tribution f (4;p) as /3-~00 when the particle-hole sym-
metry in the noninteracting Hamiltonian is altered by the
addition of a potential of —1 to site 1, destroying the
equivalence of the two sites. The distribution no longer
collapses onto a line as P~ ~.

This two-site example has served to introduce the con-
cept of the auxiliary-field projection method as a dynami-
cal process on the manifold of normalized Slater deter-
minants. In the rest of this paper we will examine the
evolution of the representation of many-body states in the
auxiliary-field projection method in the general case. Be-
cause of the high dimensionality of the manifold of Slater
determinants, it is not, in general, easy to visualize the
evolution of the representation, as it has been possible in

the above example. However, the simple example given
here exhibits many characteristics of the general situation
without being itself unduly abstract.

III. THE MANIFOLD QF SLATER DETERMINANTS

Since we want to study the evolution of the distribution
of Slater determinants which arise in the auxiliary-field
approach in an intrinsic way, as we did in the two-site ex-
ample in Sec. II, we want to have some way of
parametrizing the set of normalized Slater determinants
in the genera1 case. If we expect to be able to describe
the evolution of the weight function f by a differential
equation of some type, then we need to be able to
differentiate and integrate with respect to the parameters.
In mathematical language, we want to view the set of
normalized Slater determinants as a differential manifold.
For our immediate purposes, this will amount to nothing
more than setting up local coordinates about each point.

We assume that there are X available single-particle
states so that the M-particle fermion space has dimension

CM. A point (state) ~% & in the M-particle Hilbert space
belongs to the set D of normalized Slater determinants if
it is the antisymmetrized product of some set of M ortho-
normal one-particle functions u;, i = 1,M:

~e&=[M!] '"Pyc'*u, ~O& . (29)

Note that D is not a linear subspace of the Hilbert space;
the sum of two Slater determinants is not necessarily a
Slater determinant.

To define a local coordinate system about the point 4,
consider the number of independent infinitesimal changes
we can make to the set of vectors u, in Eq. (29) to gen-
erate different Slater determinants: Suppose we extend
this set of M orthonormal vectors to a full orthonormal
basis u;, i =1,A, for the single-particle Hilbert space.
The first M vectors are the states occupied in the Slater
determinant and the last (X —M) states are unoccupied.
To each u, , i = 1,M, we can add an amount c; of the vec-
tor u, j = 1,N. However, the addition of any state u for

j ~M does not change the Sinter determinant (it only
changes its normalization), and so the independent pa-
rameters which specify distinct nearby Slater deter-
minants are E, , with 1 +i ~ M and M+ 1 ~ j ~ N. Thus,
we need M (X —M) coordinates E," to specify all normal-
ized Slater determinants in the infinitesimal region near

~

4 &
=

~ u, , . . . , uM &. Thus, the dimension of the mani-
fold D is M(X —M).

As an example, in the two-site Hubbard model, the
single-particle Hilbert space has dimension 4, arising
from two site and two spin indices. The full manifold of
two-particle normalized Slater determinants then has di-
mension 2(4 —2) =4. However, we used the conservation
of spin by the Hubbard-Stratonovitch propagators to re-
strict our attention in Sec. II to the two-dimensional
52=0 submanifold. As it turned out, in the half-filled
model with particle-hole symmetry, we could have fur-
ther limited the dynamics to the one-dimensional mani-
fold t9, =~/2 —

Oz of states with this symmetry.
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The vectors pointing along the local coordinate axes

E, =(cteu, )(u;ec)IV) (30)

for i =1,M and j=M + 1,1V, give us a basis for the vector
space of all tangents to the manifold at the point %'

defined in Eq. (29). Each of these basis vectors is a Slater
determinant in which the state u replaces the state u, in
I+). This corresponds to a particle-hole excitation on
I
(P ), where the particle state is u, and the hole is u;.

The distance dl between two points on D infinitesi-
mally close together, I'P ) =

I
u „.. . , uM ) and I'P')

= lg 1 . . . , ElM ) wllele

u; =u+ Eij uj 7 (31)

is defined in the obvious way from the lengths of vectors
in the many-body Hilbert space as

M N
(dl)'=II%& —I%"&I'= y y (E,J)'.

i=1 j=M+1
(32)

The distance defined in this way is independent of the
particular local orthonormal coordinate system used.
Similarly, the inner product between the tangents to two
curves 4'(t) and 4"(t) passing through a common point is
given by

d@(t) d 0'(t) d'W() @'(d))(
dt dt dt dt

d c.; d c,'.
X X (33)

Again, this definition of inner product is independent of
the orthonormal coordinate system used in the summa-
tion.

The gradient of a function f (qI) defined on D can be
written as

M N

~~f= X X
I 1 m M+1 a~lm

(34)

The gradient of any function f defines a vector field on
D. For any curve 4'(t) on D, the derivative of f along
the curve is given by

df d%(r)
dt dt

(3S)

Finally, the local orthonormal coordinates can be used
to define a measure or area function d 4 on the manifold
in a natural way. The area of an infinitesimal region near
a point 4, specified in local orthonormal coordinates by
0(c; & Ac, , Is

M N

(36)
i=1 j=M+1

(This is a straightforward generalization of the usual idea
of a surface area for a two-dimensional manifold). The
integral of a function f (qI) defined on the manifold D
with respect to this measure is denoted by f f(qI)d%'

D

IV. DIFFUSIVE BEHAVIOR OF STATES

With these standard geometrical concepts defined for
the particular case of the manifold of Slater determinants,
we proceed to consider the action of the Hubbard-
Stratonovitch Hamiltonian on a many-body wave
function represented as an integral of Slater deter-
minants:

Ie &= f f(%)lv)d+ . (37)

To each function f on D there corresponds a many-body
wave function IN), as defined in Eq. (37). For example,
the points shown in Fig. 2 represent a sampling of the
function f for various values of r in the case of the two-
site Hubbard model when the initial f is a 5 function at
(01,82)=(0,0). Every many-body wave function can be
represented in this way, but the representation is not
unique, since the set of all Slater determinants is over-
complete as a basis for the Hilbert space. Given a partic-
ular representation of the initial many-body state,

Ie(0)&=f f(V;0)IV&dq, (3&)

we will represent the state
I
4( t) ) which follows the

imaginary™time evolution of the many-body Hamiltonian
according to the equation of motion

d IC(r) &= —Hle(r)&, (39)

in a similar form

le(r))= f f(%;r)le)de .
D

(40)

Just as the function f(%;0) used to represent the initial
state is not unique, the evolution of I@(r)) does not
uniquely determine the evolution of f (4';r). Specifically,
will derive the equation of motion for f(%;r) which
arises naturally from the Hubbard-Stratonovitch repre-
sentation of the many-body propagator given in Eq. (3).
This central result is given below in integral or
diff'erential form in Eqs. (S3) or (66), respectively.

A. Integral equation of motion

We assume that the many-body Hamiltonian H has a
form which is amenable to the Hubbard-Stratonovitch
transformation. In particular, generalizing the discussion
of the two-site Hubbard model, we write H as

n

H=HO —
—,
' g (H, )

i=1
(41)

where H;, i =0, n, are one-body operators of the form

H;=c 4H;4c . (42)

exp( ~H)= lim f dGI x—]U„(r,0), (43)

Thus, Ho is the one-body part of the many-body Hamil-
tonian and the (H, ), i = l, n, give two-body interaction
terms. As in the example above of the two-site Hubbard
model, the many-body evolution operator exp( rH ) can-
now be expressed as the limit of the integral over Gauss-
ian auxiliary fields x,i,
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where

U„(r,o)= + exp( —brHO) + exp( x,—IH, ) (44)

U„(o,r) is the inverse of the forward propagator U„(r,o)
in Eq. (44). Thus, the integral representation of l4(r) &

can be written as

lC&(r) &
= f fdG[x]f ( U„(o,r)

is the Hubbard-Stratonovitch propagator for a particular
choice Ix,I ] of auxiliary fields which couple to the elec-
trons through the fields H;, and

X%;0)W [7;4'] l%' &d%" (51)

pf
X

t ( / ( 267 )

dG[x]= + Q dx,.(27757
(45)

where the weight function

w„[r;q ']=J[x;q '][&e„'(0,~)le„'(o,r) &]-'" (52)

is the Gaussian measure of the n fields on I time slices.
We again emphasize that the advantage of this represen-
tation of the many-body propagator in the present con-
text is that each Hubbard-Stratonovitch propagator in-
volves one-body operators only and so maps the set of
Slater determinants onto itself (i.e., the image of each
Slater determinant under the Hubbard-Stratonovitch
propagator is again a Slater determinant).

To obtain the integral representation, Eq. (40), of the
propagated many-body wave function at time ~, we act
on the integral representation of the wave function at ini-
tial time with the auxiliary-field representation of the
propagator:

l4(r)&= f f(%;0) fdG[x]U„(r, o)l+& d%
D

= f f(%;0) fdG[x]l+„(r,o)& d% . (46)

(Here, and in the following discussion, we assume that
the infinite time-slice limit lim is taken, without ex-
plicitly writing it out. ) We now want to transfer the r
dependence from the determinants

l
4 & onto the function

f( II;r). This can be done by interchanging the order of
integration over the manifold and over the auxiliary fields

f f('0;0) f dG [x]l+„(r,o) & d%

= fdG[x] f f(%;0) 'P„(r,o) &d%', (47)
D

and changing the variable of integration over the mani-
fold for each choice of the auxiliary fields

f f(%;0)l+„(r,o) &de
D

= f f(4;0)[(%„(r,o)l%'„(r,o) &]'~ l4'&, dql',
D

(48)

where +' is the image in D of + under propagation by
the particular choice I of auxiliary fields:

includes both the Jacobian of the inverse How and the
change in the normalization of l4'& under the inverse
propagation. We now have the integral representation of
l4&(r)& written in a form where we can identify the
correct form of f(V;r) as

f(%;r)= fdG[x]f(U„(o,r)%;0)W„[r;q ] . (53)

The value of f(%;r) is thus an average of the values of
f(%;0) at the endpoints of the random Gaussian back-
ward fiows U„(o,r), each weighted by W to allow for re-
normalization of the states by the propagator and spread-
ing of the Aow on the manifold D.

B.Differential equation of motion

+ oo
—x /(2w)

f('P;~)= f f( U( , 0)%r; )0W[ 0r] dx .

(55)

Let us consider the value off at a particular point %0 on
D. The variable x parametrizes a curve on D through 4'o
as follows:

We will now work from this integral form for the evo-
lution of the function f(4;r) to a differential equation for
f on D. To do so, we will examine how the function f
behaves for very small ~. In that case, we may assume
that there is only one "time slice" in the interval [O, r]
(i.e., m = 1 or b,~=r), and that the action of the different
auxiliary fields can be treated separately from each other
and from the one-body part Ho. [This separation of the
effects of the different fields is justified because their
effects fail to commute only at O(b, r ).] The propagator
for the ith field is then simply

U (r, o) =exp( xH; ), —

and x has a Gaussian distribution with zero mean and
variance equal to ~. Considering the effect of this field
alone we have that

lq'& =[&+„(~,0)le„(~,0) &]-'"le„(r,o) &, (49)
I+(x) & =exp(XH; ) I+0& [ & +Olexp(2xH;) leo & ]

'" . (56)

, =J[x;e']d%
(50)

We define the weighting factor

w(x)= W[ rV]=n (x)J(x), (57)

is the inverse of the Jacobian of the transformation
%~%' on D. Conversely, %' is the image of 4' under the
inverse fiow U„(0,~), where the backward propagator

(58)

where

n (x)= ( +olexp(2xH, ) l %o &

accounts for the change in the normalization of states un-
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+ OO e
—x /(2r)

f(%0;r)=I f(%'(x);0)tU(x) dx .
OO &2m'

(60)

Expanding f(%(x);0)ui(x) in a power series about x =0,
we have that

f(%'0;r)= I f(%'0;0)m(0)+ x

der propagation and

J(x)=
d%'p

(59)

is the Jacobian of the inverse fiow on D. Note that ~I'(x)
and w (x) do not depend directly on r and that the r
dependence of f comes only from the Gaussian integra-
tion. The integral equation (55) for f(%0,r) 'now takes
the form

8
2D(0—')f + [V'q, Vi(%')]V'q,f—V2(%)f,

87

where D (4) gives the diffusion terms

(66)

D(% )f = & &u„lH; lu, )&u la;lui &

&c)c .
k BE(

(67)

where the single-particle wave functions u are defined as
in Eq. (29). The gradient (or drift) terms are governed by
the function

As shown in the Appendix, by a change of coordinates
from the x; to the coordinates c; defined in Sec. III, this
equation can be transformed into a differential equation
for f(%;r) in the intrinsic coordinates E," on D. The
equation is of the form

e
—x /(2r)

&2m.r
dx

Only even powers of x contribute to the Gaussian-
weighted integral and x " contributes a term proportion-
al to z". Also, note that w (0)=1. Thus,

n

+ g [MTra, —
i =1

x&qla, l+&
.

,

(e la, le)]

(68)

f (4 , 0)r—f(qlo, 0)=— r+O(r )
1 Bfw

1Bf BfBw
2 a a a

+— f(%'0,0) r+O(r ) . (62)
1 elm

Bx

where TrH; is the trace of H, as a one-body operator.
(As before, M is the number of particles and X is the di-
mension of the single-particle Hilbert space. ) The
branching (or decay) terms are proportional to the func-
tion

v, (q )= —M Tra, +(++1)&+laolq &

Each auxiliary field contributes in a similar way to the
change in f over the short interval [O, r]. The contribu-
tion of the one-body term Hp is somewhat different since
it involves no integration over auxiliary fields. Consider-
ing that field alone, the inverse evolution of the state
i+0) is just

l%'(x) ) =exp(xao ) l %0), (63)

where x is set equal to ~. The variable x is no longer in-
tegrated over. With the functions of x now defined as be-
fore, except with Ho replacing H, , the change in f over
the integral [0,r] due to this term is given by

f(~110,r) f(40,0)= + —f(%0,'0) r+O(r ) . (64)
Bf Oui

BX Bx

+— f(+o,r)
1 3lD

Bx;
(65)

Adding the contributions of all fields to the change in f
over the interval [O, r] to first order in r, we get the par-
tial derivative offwith respect to r as

2 (4'o, r) + f(+o, r)
O'T Bxp Bxp

++ 1 Of+Of Bw

2 Qx. Bx (3X.

—z(++1)[(q la, 'lq )

At this point we have essentially integrated out again
the auxiliary fields we introduced initially with the
Hubbard-Stratonovitch transformation and it might ap-
pear that the evolution of the function f(4;r) is indepen-
dent of the particular transformation used. However, the
mapping of the many-body problem onto the difFusion
equation (66) on D depends crucially on the Hubbard-
Stratonovitch transformation. The operators H, ,
through which the auxiliary fields couple to the electrons,
appear explicitly in the coefficients of Eq. (66), as given in
Eqs. (67)—(69). Different Hubbard-Stratonovitch trans-
formations of the original many-body problem will lead
to difFerent diffusion equations on 0 even though they
must give the same evolution of the many-body state
l@(r) ) defined from f in Eq. (40). This apparent paradox
is easily resolved when one recalls that the set of all
Slater determinants is a vastly overcomplete basis for the
many-particle Hilbert space. An infinity of different
weight functions f (ql;r) can give the same many-body
state via Eq. (40).

Finally, we note that the lack of correlation between
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different auxiliary fields was crucial to the derivation of
diffusive behavior of the states. In a situation where the
auxiliary fields have a genuine physical dynamics, as
they do in a coupled electron-phonon system, where the
phonon fields take the role of the auxiliary fields, one can-
not apply the same arguments. In the simulation of the
auxiliary fields using importance sampling of the quantity

the magnitude of this quantity induces strong correla-
tions in the auxiliary fields which are sampled. However,
in the original Gaussian measure, defined in Eq. (45),
there is no intrinsic correlation between different fields.
The dynamics of the fields induced by importance sam-
pling is the subject of a separate investigation.

V. DISCUSSION

We emphasize that nothing extra has been introduced
beyond the Hubbard-Stratonovitch transformation in ob-
taining the diffusion equation (66). The distribution func-
tion f(qI; r) (and its diffusive behavior) was already impli-
citly contained in the auxiliary-field projection approach.
We should also point out that the diffusion equation (66)
only depends on the form of the many-body Hamiltonian
in Eq. (41), and is not restricted to the Hubbard model.
Although Eq. (66) is formally simple —a diffusion equa-
tion with drift and branching terms —the exact solution
is by no means easy to envisage and a number of subtle
points can affect its behavior. However, the diffusion
form in which the evolution of the many-body state is
now cast allows us to understand qualitatively which
determinants contribute to the representation of the
ground state in an important way. In particular, regions
of D where the "potentials" V, and V2 are high will be
avoided since (returning to the random-walk view of
equations of this type) the drift terms will force walkers
away from regions where V& is high and branching will
cause annihilation of walkers in regions where V2 is
high, '". When the interaction terms are small, both of
these functions are dominated by the noninteracting sys-
tem energy ( 4 Mo i

4 ), so that the noninteracting ground
state predominates and the mixture of other states is
small. The interaction terms favor regions where the en-
ergies ( I'iH; i%') are large. In the case of the Hubbard
model, where H; =n, &

—n, &, this can be achieved by
ensuring that the Slater determinant maximizes the mag-
netization on each site, clearly giving a tendency towards
ferromagnetism or antiferromagnetism.

Thus, the potentials V, and V2 reAect some of the be-
havior one expects intuitively from the problem and give
rise to a representation of the ground state which is con-
centrated near the mean-field solutions. The form of V,
and V2 are certainly suKciently complicated that a pre-
cise connection between their minima and the mean-field
solutions is not obvious. In the two-site Hubbard model
example of Sec. II, the maximum of the asymptotic distri-
bution of f (4;/3) does not, in fact, occur exactly at the
mean-field solution but is slightly displaced from it.
However, the general physical characteristics of the
mean-field solution are similar to those of the state 41 at

which f is a maximum; both follow a comparable transi-
tion from delocalized, independent-electron behavior to a
localized, Heitler-London-like state as the interaction pa-
rameter U increases. In simulations of the auxiliary-field
method for cases up to 4X4 sites of the square-lattice
Hubbard model, we have found the same very strong
connection between the mean-field solutions and the re-
gions where the asymptotic distribution of f (%';/3) is con-
centrated. How well this connection is obeyed in the gen-
eral case of the Hubbard-Stratonovitch approach is prob-
ably some measure of how "appropriate" a particular
choice of the Hubbard-Stratonovitch transformation is
for the physics of the many-body problem at hand.

We now turn to the issue of the exponential decay of
the average sign o (/3) defined in Eqs. (7) and (8) for the
auxiliary-field method. It is clear that inversion of the
manifold D, defined by iV) ~ —I'), commutes with the
diffusion equation operator on D. It follows that the
eigenfunctions of the differential equation can be
classified by parity; a function f on D is even if
f(0') =f ( —%') and odd if f('0) = f ( —4). —Since the
diffusion equation propagator defined in Eq. (53) always
maps positive functions into positive functions, the eigen-
function with the highest eigenvalue in general will be
non-negative everywhere since this eigenfunction will
dominate at large times. In fact, it will be strictly posi-
tive everywhere if the diffusion process in ergodic on D.
Thus, in general, the eigenfunction with the highest ei-
genvalue has even parity. INote that the highest eigenval-
ue of a diffusion propagator exp( —rH) is the most slowly
decaying and corresponds to the lowest eigenvalue of the
Hamiltonian H. j

However, any even-parity function f+ gives a zero
many-body state

(70)

and so its eigenvalue does not correspond to an eigenval-
ue of the many-body operator. Only odd-parity functions
f can give rise to nonzero many-body states. Consider-
ing the scheme of Sorella et al. , ' we see that the usual
"partition function"

(71)

where f(4;0)=5(%' —ql, ), couples only to the odd-parity
functions, while their unsigned partition function

z'(/3)= f f(e;/3)i(%, ie)id% (72)

couples only to the even-Iiarity functions. Thus, the aver-
age sign o.(/3)=Z(/3)/Z (/3) will decay exponentially as
P~ co with an exponent equal to the difference between
the highest even-parity eigenvalue and the highest odd-
parity eigenvalue. In exceptional circumstances this
diff'erence may be zero Isee the remarks about "pathologi-
cal" behavior of Eq. (66) belowj, in which case the aver-
age sign tends to a constant. These results are in accord
with assertions of Sorella et al. that the sign either tends
to a constant or goes exponentially to zero.

The sign decay in the grand canonical approach can be
understood in the same context. At large /3, the most
probable fermion number M dominates the grand canoni-
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cal average. Decomposing the determinant the operator
I+ U„(/3, 0) into contributions from propagating indivi-
dual M-fermion trial states, ' we realize that each term in
the trace simply corresponds to a different initial condi-
tion f(%;0) for the same diffusion problem on the M-
fermion manifold of Slater determinants. The same func-
tions f+ and f thus dominate all the contributions to
the (grand) canonical determinant at large /3, explaining
the comparable decay rates of cr(P) observed for both
grand canonical and projection approaches. ' '

The connection of regions which are parity images of
each other by diffusion paths is the crucial factor deter-
mining the splitting of the odd and even eigenvalues. If it
is possible to diffuse from %' to —+ for a point 4 where
the asymptotic distribution of f(%', /3) is not zero, then
the difference between the highest even-parity eivenvalue
and the highest odd-parity eigenvalue must be nonzero.
The greater the "ease" of diffusion (i.e., the shorter the
average transit time from ~P to —iII), the greater the split-
ting of the eigenvalues and the more rapid the decay of
the average sign. On the other hand, in the exceptional
case when —4 cannot be reached by diffusion from 4,
then the odd- and even-parity eigenvalues are degenerate
and the sign tends to a constant as /3~ oo.

For the weakly interacting system the potentials V, (4)
and Vz(%') are dominated by (V~HO~V). If 4'o is the
noninteracting ground state, the minimum barrier in the
function ( %'~Hz ~%) between 'I10 and —+o equals the gap
to the first excited state of the noninteracting system.
Thus, if the noninteracting Hamiltonian has a degenerate
ground state (and so is metallic), there will be no barrier
to diffusion between 'Po and —Oo to a first approxima-
tion. This is why closed-shell systems (where the nonin-
teracting ground state is nondegenerate), in general, have
a much slower rate of decay of the average sign than
open-shell systems (where the noninteracting ground
state is degenerate). When the interaction terms are
stronger, we have found that the mean-field solutions
take on the same qualitative role as the noninteracting
ground state has for weak interaction, and the ease of
diffusion between different equivalent mean-field solutions
typically determines the rate of decay of the average sign
o (/3).

This diffusion picture of the auxiliary-field method re-
veals a common forrnal origin of its "sign problem" and
that of the Careen's-function Monte Carlo method. In
both cases, one is dealing with a diffusion-type problem.
The asymptotic solution of this diffusion, to which nu-
merical simulations will naturally tend, is everywhere
positive. In each approach this nodeless solution belongs
to the identity irreducible representation of some symme-
try group of the diffusion operator. However, the solu-
tion which one requires for the physical problem belongs
to a different representation of this symmetry group —a
representation which must be negative in some regions.
In the Green's-function Monte Carlo, the symmetry in-
volved is the exchange of particles, under which fermion
wave functions are required to be antisymmetric. In the
auxiliary-field projection method, the symmetry involved
is the parity operator, %~—%', under which physically
relevant solutions of the diffusion problem must be odd.

Moreover, the diffusion picture of the auxiliary-field
approach gives us a clear understanding of why the ap-
proximation of using the unsigned partition function
Z (/3) yields a reasonable approximation for al/ physical
properties of the system (not just the energy) in cases
where the decay of the average sign is slow. If +, is in
one of the regions where the drift and branching poten-
tials V& and V2 are low, and there are substantial barriers
of the functions V& and V2 inhibiting diffusion from 'k7 to—0'„ then we could solve the diffusion equation approxi-
matly in regions where V& and V2 are low. These regions
are dominant in the slowly decaying eigenfunctions of the
diffusion operator. The slowest decaying even- and odd-
parity wave functions can then be constructed approxi-
mately as even and odd linear combinations, respectively,
of the slowest decaying approximate solutions where V,
and V2 are low. Then

I f+( ~I)Isgn((%',
~

~I)I)~O)d+= f f (4)~iII)d%', (73)
D 0

and so one obtains approximately the correct many-body
ground state [corresponding to f (~p)] in using the
many-body state corresponding to f+(~II)sgn((0', ~'P) ),
which is qualitatively similar to using Z (/3) in calculat-
ing all physical quantities.

We close this discussion with some remarks about the
kinds of "pathological" behavior, some of which the
diffusion equation (66) displays in general, and some in
exceptional cases. A point which complicates the
analysis of the diffusion equation (66), in general, is the
fact that the equation is degenerate in the sense that the
diffusion at any point does not act in all directions of the
manifold. There are M(X —M) directions in the mani-
fold but there are only n auxiliary fields, and so, at most,
n linearly independent directions of diffusion on 0 at any
given point. Thus, the rank of the matrix of diffusion
coefficients defined in Eq. (67) is at most n In the t. wo-
site Hubbard model example, there is only one effective
auxiliary field; viz. , that which couples to (n» n2t

)—
—(n» —n2&). The other independent field couples to the
total magnetization (nit+n2t) —(nii+n~i), a con-
served quantity which gives rise to no real dynamics on
the manifold D.

Furthermore, the manifold might be divided into
separate regions by a surface where all normal com-
ponents of diffusion are zero. This will give rise to solu-
tions of the diffusion problem being confined entirely to
one of the separate regions. Again, in the two-site Hub-
bard model (see Fig. I), the 0& and 92 axes form such sur-
faces, as do the lines 0, —gz=+vr/2 (i.e., the submanifold
of states with particle-hole symmetry). Thus, if the initial
trial state 4, is within the triangle with vertices (0,0),
(m/2, 0), (O, n/2), the final distribution will be entirely
contained within that triangle also. In this case the odd
and even eigenfunctions of the diffusion will be degen-
erate and the average sign will tend to a constant as
/3~ ~. However, we must say that, although this cir-
cumstance is highly advantageous from the point of view
of numerical auxiliary-field simulations, it is very much
the exception rather than the rule. Moreover, we do not
know any way that the Hubbard-Stratonovitch transfor-
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mation could be set up in advance for the general prob-
lem in order to achieve this nonergodic behavior of the
diff'usion and strict degeneracy of the odd and even eigen-
functions.

The collapse of the distribution f onto the line of states
with particle-hole symmetry in Fig. 2 is quite striking. In
general, it may happen that there is a submanifold of D
which is stable in the sense that the diffusion and drift
directions for points on the manifold are always parallel
to the manifold and points near the manifold tend to drift
onto it. In that case, points which start on the manifold
never diffuse or drift off it and the diffusion problem can
be confined and solved on that manifold alone. This
occurs, for example, in the half-filled Hubbard model,
where the states which have particle-hole symmetry
form such a stable manifold.

The lack of a one-to-one correspondence between the
eigenvalues of the diffusion operator and those of the
original many-body operator is a consequence of the
overcompleteness of the representation which we use of
the many-body states in terms of all Slater determinants.
Indeed, although the many-body Hamiltonian has a finite
number of eigenvalues, the diffusion operator may have
an infinite number. Mathematically, the diffusion opera-
tor is not very tractable since it is not self-adjoint (the
drift terms cause it to be non-self-adjoint). However, it is
a differential operator on a compact manifold D and so
one may expect it to be reasonably well behaved and
many of its properties to be intuitively apparent.

=H, ie& —ie&&via, iq & =ra~ . (Al)

This serves to define the action of T, which takes the
component tangential to D of any vector associated with
the point 4 of D. The derivative with respect to x of any
function f on D is then given by

= ( TH; iII ) V q f . (A2)

The component of the How derivative TH; 4 along the lo-
cal coordinate axis cl of the manifold is equal to the ma-
trix element of H, for that particle-hole excitation:

( 7'H; + ) = & ei I a; I
+ &

=
& u

~ H; ~ ul & . (A3)

Also note that the Aow derivative TH, % along the mani-
fold is half the gradient of the expectation value of H, in
the state ~'0):

basic coordinates of the manifold D, i.e., the local ortho-
normal coordina. es c,; at each point. For simplicity, we
will assume that all wave functions involved in the prob-
lem are real and make no distinction between a quantity
like &0'~'P') and its complex conjugate &0'~+). This is a
justifiable approach when all the auxiliary fields are
real —as they are in the problem as we have presented it.

The derivative of the Qow exp(xa, ) on D is given by
the component of H, ~'p) along the manifold (i.e., normal
to ~%') itself). Thus,

VI. CONCI. USIONS ra, e=-,'V, &+iaido& . (A4)

In conclusion, we have developed a view of the
auxiliary-field projection approach in terms of a
differential equation with diffusion, drift, and branching
terms on the manifold of normalized Slater determinants.
This view offers substantial insight into the behavior of
the method, allowing a qualitative understanding of the
states dominant in representing the ground state. It also
provides a common formal view of the continuum
Green s-function or diffusion and the auxiliary-field pro-
jection methods. It demonstrates the exponential decay
of the average sign in the auxiliary-field approach to be a
consequence of the general property of diffusion equa-
tions that they have nodeless ground states. We have il-
lustrated the dynamical behavior of resulting representa-
tion of many-body states in a simple two-site Hubbard
model. As topics for future study, the view offers in-
teresting possibilities for approximating ground-state
properties from approximate solutions of the diffusion
equation in regions of the manifold of Slater determinants
where the drift and branching potentials are low. It also
suggests corrections to the Sorella approximation of
neglecting minus signs in the action might be calculated
using approximate "barrier penetration rate" methods fa-
miliar in other contexts.

The logarithmic derivative of the inverse normalization
factor n (x) under propagation by exp(xH; ) is given by

= —&e(x) H, ~e(x)),1 an
n Bx

(A5)

and the logarithmic derivative of the Jacobian J (x) of the
mapping %0~%(x) on D is equal to the divergence of the
Row derivative

=V'q, ( TH; ql) .
1 BJ
J Bx

Making use of the basic definition of TH, '4l in Eq. (Al) to
calculate its rate of change along the maniold in the
direction c,l, it is straightforward to show that

0TH %
=&8, /H, /E, ) —&e/H, /e&

1

~lm
Elm

=&u [H[u ) —&u, ia[u, & . (A7)

Summing over all orthogonal directions in the manifold
gives '

M
(&u ia, iu ) —&u, ia, iu, ))

l=l m =M+1

APPENDIX

In this appendix, we transform the differential equation
(65) for f (4;r) involving the auxiliary-field derivatives
into a form in terms of derivatives with respect to the

=M Tra, X&q ~a, ~e&, —

where TrH, is the trace of H, as a one-body operator.
Putting together the derivatives for n (x ) and J(x ) gives
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us the derivative of their product io (x ):

10w lan 1 BJ
2 Bx n Bx J Bx

=M Tra, (N—+1)& +la I+ & . (A9)

f=—[M TrH; —(N+1)&qtIH; I+ &]
1 0 w 1

X

—2(N+1)[&%'la Iql &

The contribution of (Bw/t)x)(Bf /t)x) to the gradient (or
drift) term in the differential equation (66) for f is

=[M Tra, (N+1—)&'Itla;l~p&](TH, @).Vq,f
= —V, MTra;—1 N+1

—(&isola, le&) ] f. ' (A13)

The second derivative of f with respect to x on Eq.
(65) can be expanded to give drift and diffusion terms in
local coordinates:
1a' ==

—,'(TH;4) Vq, [(TH;ql) Vq f ]2 Bx

=
2i [(TH 4)'Vq .TH iP]Vqf

x &q'la; Iq'& vf . . (A 10)
M N+lX 2

j, I =1 k, m =M+1
&ukla;lu, &&u la;let&

Turning now to the coefficient of f in Eq. (66) coming
from —,

' (t) iJ ) /Bx in Eq. (65), we note that
2

1 8 w 1 Bw 0 1 Bw

w Qx w Bx Bx w Bx
(Al 1)

and that

1 Bw

W Bx
=(Ta;il') Vq, [M TrH, (N+1)&—ll~ai, I+&]

(N+1)(T—a, e) V, &q IH, I+&

= —2(N+1)(TH;4') (TH;4)

= —2(N+1)(& q'la; —
& +la; I+ & & q'I )H; Iq'&

2(N + 1)[&~I'la Ili& —(& ~l'la; q'& )'] .
(A12)

The branching term (i.e., the term multiplying f) in the
diff'erential equation (61) for f is then given by

(A14)

The first term on the right-hand side contributes to the
drift term Vq,f in the diff'erential equation for f and the
second sum of terms gives a diffusion contribution. The
drift term can be written as

i [(TH qi) V~TH ~ 4)V q,f: [V'q ( TH 0—) ]Vq,f
=,'[v, (&q Ia,'Iq &

—&q'la;I+&')]vq f. (A15)

The one-body potential Hp contributes drift and
branching terms but no difusion terms to the differential
equation. The drift term is

a =(THo+) Vq,f=
—,'(Vq, &+IHolqi &)Vq f (A16)

Bxp

and the branching term is

f =[Vq, (Tao@)—&%'lao 0'&]f
Bxp

= [M TrHo (N + 1 ) & O' I a—o I

'0 & ]f . (A17)
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