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Positive-Projection Monte Carlo Simulation: A New Variational Approach to
Strongly Interacting Fermion Systems
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We show that very accurate ground-state energies and correlation functions can be obtained from an

approximate, variational form of the widely used auxiliary-field simulation method. It is derived by re-
casting this method as a dift'usion problem, and does not exhibit the poor statistical behavior due to van-
ishing normalization or "sign" common to exact fermion simulations. We give illustrative results for
two-dimensional Hubbard models.

PACS numbers: 71.10.+x, 71.45.Nt, 74.20.—z, 75.10.Lp

Monte Carlo simulation is often the only feasible
method for understanding the properties of strongly in-

teracting quantum systems. One approach to such simu-
lations is based upon projecting the ground-state wave
function l@o) from a trial wave function I y, ) by evolving
it according to Schrodinger's equation in imaginary time
r. ' The formal solution is

l@(r)&=e '"I y, & =U(r)
I y, &,

defining the evolution operator U in terms of the Hamil-

tonian H. The expectation value of an operator 2,
(3),=(y, IUAUI y, )/(y, IUUI y, ), (2)

thus approaches its ground-state value for large z.
To evaluate such expressions numerically, it is ex-

pedient to replace the pair interactions in U by a func-
tional integral of one-particle operators over a set of r-
dependent auxiliary fields x(r) via the Hubbard-
Stratonovich (HS) transformation. 2 3 The resulting ex-

t

pression is

f»«v I IUPUP I
' ' ' UPI—2 —l~UPI2' ' U2Ul III, &

fBx G(yi IUpUP /' ' ' Up/2 —~Up—/2
' ' ' U2U~ I ly, &

(3)

where G is a Gaussian function of x, and UI are propaga-
tion operators for the discrete time slices 1, . . . , P into
which the interval (0,2r) is typically divided. The UI

contain only one-particle operators (those of the original
H and those representing an xI-dependent external po-
tential), permitting the direct evaluation of the matrix
elements in Eq. (3). For fermion systems, UI evolves any
Slater-determinant state ly) into another Slater deter-
minant, so the proper fermion antisymmetry can be
maintained.

The major difficulty in evaluating the integrals in Eq.
(3) is that the matrix element in the denominator
D(x) =(y, lUp U~ly, ), which also occurs as a factor
of the numerator, can change sign. To evaluate the mul-

tidimensional x integrals by Monte Carlo methods, im-

portance sampling of x based on a positive weight 6IDI
must be introduced, which then places a sign factor
s=D/IDI in both integrands. In general, the expecta-
tion value of s is found to vanish exponentially at large z,
and statistical errors in the Monte Carlo evaluation of
(A) diverge, a phenomenon known as the "sign prob-
lem. "

D(x) has the form of a determinant in both the
ground-state-projection and grand-canonical-ensemble
methods. We recently analyzed the behavior of D from
"inside, "

by studying the dynamics of IN(r)& as it
evolves from ly, & under the influence of the random
Gaussian fields x. Since ly, ) remains a Slater deter-
minant as it propagates through the x fields at each time

= —
—,
' D(y)f [V~V)(y)] V~f—+ V2(y)f, (s)

where the second-order-derivative diffusion operator D,
and the drift and branching potentials, V~ and V2, can be
explicitly written in terms of the operators of the initial
many-body Hamiltonian. The equation is to be solved
with the initial condition f(y;0) =b(y —y, ). Equation
(3) for (A), can be reexpressed as

ff(v 'r)f(v''r)(wl&lw')dv dv'

ff(y; r)f (y'; r)(w I y'&dy de'

The solution of Eq. (S) can, in principle, be expanded
in terms of eigenfunctions f' and eigenvalues e' of its
right-hand side, as

f(y;r) =pc;e "f'(y),

where the coefFicients c; are determined by the initial
condition. The manifold of normalized Slater deter-
minants contains both the determinant y and its negative

slice, the Gaussian distribution of all the x's from 0 to r
generates a distribution f(y;r) of determinants Iy), and

Ie(r))-„If(y;r)ly)dy,
where fdic represents integration over all normalized
Slater determinants. We have shown that f obeys a
diffusion equation with drift and branching,
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—y as distinct points. We have shown that Eq. (5) is
8invariant under the parity operator, y —y. Given

the ordinary diffusion form of Eq. (5), the lowest eigen-
+value must belong to an even-parity eigenfunction f

which therefore dominates the sum in Eq. (7) at large r.
However, even-parity terms in f cancel in the integral
for the many-body wave function, Eq. (4), and hence in

the numerator and denominator of Eq. (6). These in
tegrals are dominated by the lowest odd-parity eigen-
function f, while their integrands are dominated by

f+. Statistical evaluation of the integrals requires
sufficient accuracy to extract the exponentially small
physical contribution. This analysis provides a theoreti-
cal basis for the universality of the sign problem, and
suggests that it is fundamentally insoluble. 8,9

The positive-projection (PP) approximation we intro-
duce was motivated by this analysis. Figure 1(a)
schematically illustrates a possible Vq(y) potential,
f+(y), and f (y) for a hypothetical one-dimensional y
manifold, assuming V~ =0 and a simple d /dy diA'usion

term. [A double-well character is strongly evident in the
actual examples we have studied, with the basins of at-
traction near the Hartree-Fock (HF) solutions. ] PP con-
sists of supplementing Eq. (5) with the boundary condi-
tion f(0) =0, which is equivalent to setting V2(y) =~
for y(0, as illustrated in Fig. 1(b). The eigenfunction
with the lowest eigenvalue is now f . If we did not
know the position of the node of f exactly, we would

only make a smail error if we put it somewhere near the
center compared to the double-well separation. Let us
denote as f (y;r) the solution of Eq. (5) subject to the
usual initial condition and our PP nodal condition. The
(y~ I((') overlap term in the denominator need not be posi-
tive. However, the average sign is bounded from below,
and usually stays near 1. Equation (6) with f* substi-
tuted for f has a variational character, and in particular
would give an upper bound for the energy if A were the
Hamiltonian. As with conventional variational calcula-
tions, the approximate placement of the f* node obviates
the possibility of converging to a truly exact solution.
Unconstrained projection is always to be preferred where

the rate of sign decay permits an acceptable combination
of large r and smail statistical errors.

The PP method has a formal resemblance to the
fixed-node approximation ' in the Green's-function
Monte Carlo (GFMC) method, '' but the context and
physical content are quite diferent. The naturally dom-
inant term in the unconstrained GFMC method is the
boson ground state. ' The fixed-node approach avoids
boson collapse by setting the entire nodal structure of the
many-body wave function in ordinary configuration
space equal to that of a simple fermion trial function.
By contrast, the auxiliary-field method enforces fermion
antisymmetry automatically. Even the uncontrolled ap-
proximation of neglecting minus signs in Eq. (3), which
our analysis shows to be equivalent to approximating
~f ~ by the naturally dominant f+, ' leads to only small
errors in most measured quantities. The PP method
removes f+ without imposing any direct constraint on
the nodal structure of the many-body wave function,
which may adjust with nearly complete freedom accord-
ing to the Hamiltonian.

The dift'usion formulation is more useful for insight
than for computation, for which we return to the conven-
tional integration over HS fields using Eq. (3). A practi-
cal way to define the PP constraint is to set the nodal
surface equal to the hyperplane perpendicular to a "con-
straint" wave function ~4, ), which could be one or a
small sum of Slater determinants. Heuristically, we ex-
pect that the better ~4, ) approximates the ground state,
the closer the hyperplane will come to the exact nodal
surface off . If we impose the P conditions

(4(~U(U( —(
' ' ' U2U(~t((() &0, l=l, . . . , P/2,

(8)
(t(r(iUpUp (U(y(U(-i@, ) & 0, I =P/2+1, . . . , P,

on the stochastic process used to sample the HS fields x,
we achieve the equivalent of setting Vi in Eq. (2) to + ~
for ail y on the wrong side of the constraint surface.
Members of the sample which satisfy Eq. (8) are select-
ed by the usual importance sampling with probability
proportional to G~D~ using a hybrid Monte Carlo ap-
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FIG. I. (a) Schematic illustration of potential V~ and func-
tions f+ and f for a one-dimensional ((( manifold. (b) Solu-
tion f* with constraint Vq =~ for y & 0.

FIG. 2. Natural log of the sign as a function of P for con-
ventional (Ref. 5) (solid) and PP (dashed) simulations of the
2X 2 three-electron Hubbard model with U=4.
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TABLE I. Average sign &s&, ground-state energy per site F., exact-diagonalization energy
Ed„g, and dilference hE from PP simulations based on (0.5-2.0) x10' MC samples, for the
Hubbard models and parameters indicated. Energies are in units of the hopping parameter t,
constraining states ~@,& are discussed in the text, and P =10r

System

(2x2)-3
(3x3) 8

(4x4) 14

"Reference 13.

0.5
0.5
0.5
0.5
0.5
0.25
0.25
0.5

1-N
1-C
1-N
9-N
1-N
1-N
9-%
1-X

(s)

0.85 (2)
0.44(5)
0.83 (3)
0.84(2)
0.88 (3)
0.88 (4)
0.90(2)
0.46(7)

—1.5980(20)
—0.956(21)
—1.0208 (27)
—1.0319(31)
—0.7528 (90)
—0.780(10)
—0.7926(55)
—0.971 (11)

Ed„g

1.6046
—1.0405

—0.8093

—0.9840 '

AE

0.0066
0.084
0.0197
0.0086
0.0565
0.029
0.0167
0.013

proach. ' Because of the i-nonlocal nature of the
constraint, all the fields are simultaneously updated. In
practice, we find that the constraint does not significantly
decrease our acceptance rate compared to conventional
simulations unless we choose a physically inappropriate
~4, ), putting the node off in a high-probability region.

Standard practice in HS simulations is to measure an
operator A at every time slice, since this improves statis-
tics. This is not possible here, since the "left" and
"right" constraint regions in Eq. (8) cannot overlap.
Measuring A at the midpoint, so that f*(y;r) and
f*(y';r) are sampled identically, ensures that a varia-
tional bound is obtained. Alternatively, one could insert
additional unconstrained time slices between the con-
strained regions, and average 2 measurements over
states evolved by the exact propagators within this cen-
tral region. This strategy, which is formally similar to
the "release node" approach of GFMC, '' could correct
errors caused by an inexact nodal constraint surface.
While it reintroduces the sign problem, preliminary tests
have shown that moderate-sized central regions do not
cause unmanageable sign decay.

To test the PP approach, we selected several two-
dimensional Hubbard models with periodic boundary
conditions. It is known that the sign problem is worst
when the Fermi level falls in a degenerate set of states of
the noninteracting system, and we deliberately chose
such cases: 2 x 2 with 3 electrons, 3 x 3 with 8, and 4 x4
with 14. Figure 2 shows the logarithm of the average
value of the sign as a function of p (=2r) for conven-
tional (solid) and PP (dashed) simulations. It is readily
apparent that (s) is exponentially decaying with conven-
tional sampling, and essentially p independent with PP.
For the P =10, U =4 results shown in Table I, conven-
tional simulations give (s) as 0.01 for (4x4)-14 (Ref. 6)
and -0.08 for (3x 3)-8 (estimated).

The constraining state ~4, ) was most frequently
chosen as a single determinant, indicated as "1-X" in

Table I, and the same state was used as the trial state
~ y, ). To generate these determinants, one-electron

eigenstates were examined in the presence of a pattern of
weak "magnetic" potentials, and patterns which split an
isolated state above the Fermi level were selected. The
patterns for each model are indicated in Fig. 3. The N
pattern for (3 x 3)-8 with U=4 gave a significantly lower
energy than the C pattern, indicating the variational im-
provement of the energy with an improved PP constraint.
It also gave a larger (s), and a better MC acceptance
rate. We note that the 1 N~@,) is-numerically very
similar to one of the nine equivalent HF solutions for this
problem, thus placing the node of f away from the
basin of attraction around this HF state. The sum of
nine determinants formed by translating our 1-N state to
all lattice sites, denoted 9-N, has the same symmetry as
the ground state. Using it for ~4&, ) while retaining one
such determinant for ~y, ) gave even lower energies. For
U=8, decreasing hr to 0.25 to obtain a more accurate
representation of the many-body propagator further
lowered the energy. This observation emphasizes the
role that accurate ground-state projection (large p, small
hr) plays in the PP method, once the nodal constraint is
chosen reasonably well. For the (4x4)-14 test, we chose
the pattern labeled I, whose ground state has equal
overlap with states from Neel-like patterns with both
possible sublattice magnetizations, and yields a very
good energy.

Correlation functions (c,t~it. c,~J.) provide a more
stringent test of the quality of the wave function
developed by PP. These are compared with exact diago-
nalization results in Table II for the (2 x 2)-3 and

+ — +

FIG. 3. Patterns of degeneracy-lifting potentials used for
~@,& in Table 1.
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TABLE II. Ground-state correlation functions for parallel (p) and antiparallel (a) spins on-

site (0) and for first (I) and second (2) neighbors, comparing positive projection (PP) and di-

agonalization (D) results. (2 x 2)-3 has inequivalent first-neighbor correlations. Statistical un-

certainty is —+ 0.003.

System

(2x2) 3

P =20
(3x3)-8
P =10

PP
D

PP
D

1p

0.238/0. 003
0.256/0. 001

0.258
0.261

2p

0.259
0.243

0.408
0.406

oa

0.142
0.150

0.154
0.166

la

0.247/0. 358
0.235/0. 350

0.481
0.476

2a

0.253
0.265

0.369
0.371

(3x3)-8 models with U=4. The (2x2)-3 model has a
pair of degenerate ground states, and a 2-N translated
~4, ) was used to favor a particular broken-symmetry
combination. (Nearest-neighbor correlations are ine-

quivalent in the two lattice directions, and two numbers
are given in the table. ) DiH'erent linear combinations of
the ground-state pair change all the calculated values,
and the difficulty of projecting out a particular combina-
tion prevents even better agreement. For (3x3)-8, the
ground state is nondegenerate, although excited states of
diAerent symmetry lie within 0.04 hopping-parameter
unit. Using the 9-N ~4, ) with the correct symmetry con-
tributes to isolating the ground state. While only
iJ.r =0.25 results are reported here, preliminary examina-
tion of extrapolation to /J. r =0 indicates quadratic con-
vergence to the exact result within statistical error.

In summary, we have introduced a variational
auxiliary-field quantum Monte Carlo method for fer-
mions which does not exhibit the problem of the ex-
ponentially vanishing normalization or "sign. " Our
analysis in terms of the equivalent diA'usion equation
shows that the results would be exact if a simple nodal
surface were chosen correctly. This analysis and our nu-

merical examples show that excellent ground-state ener-
gies and correlation functions can be obtained even
without an exact understanding of this surface. There is,
of course, no guarantee that PP will give superior results,
in any particular case, to a conventional variational cal-
culation with a cleverly chosen wave function. We anti-
cipate, however, that the PP approach should be of con-
siderable advantage in extracting properties of simple
models in "problem" cases, and in extending auxiliary-
field methods to atoms, molecules, and real materials.
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