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Efficient calculation of imaginary-time-displaced correlation functions in the projector
auxiliary-field quantum Monte Carlo algorithm

M. Feldbacher and F. F. Assaad
Institut für Theoretische Physik III, Universita¨t Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

~Received 28 September 2000; published 29 January 2001!

The calculation of imaginary-time-displaced correlation functions with the auxiliary-field projector quantum
Monte Carlo algorithm provides valuable insight~such as spin and charge gaps! into the model under consid-
eration. One of the authors and M. Imada proposed a numerically stable method to compute those quantities@J.
Phys. Soc. Jpn.65, 189 ~1996!#. Although precise, this method is expensive in CPU time. Here we present an
alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement.
The method is based on the observation that for a given auxiliary field the equal-time Green-function matrixG
is a projector:G25G.

DOI: 10.1103/PhysRevB.63.073105 PACS number~s!: 71.27.1a, 71.10.2w, 71.10.Fd
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For a given HamiltonianH5(x,ycx
†Tx,ycy1HI and its

ground stateuC0&, our aim is to calculate

Gx,y
, ~t!5

^C0ucy
†~t!cxuC0&

^C0uC0&
, t>0. ~1!

Herecx
† creates an electron with quantum numbersx, cx(t)

5et(H2mN)cxe
2t(H2mN), and the chemical potentialm

5E0
N112E0

N . HI corresponds to the interaction. Within th
projector quantum Monte Carlo~PQMC! algorithm, this
quantity is obtained by propagating a trial waveuCT& func-
tion along the imaginary time axis:2–4

^C0ucy
†~t!cxuC0&

^C0uC0&
5 lim

Q→`

^CTue2QHcy
†~t!cxe

2QHuCT&

^CTue22QHuCT&

[ lim
Q→`

G,~Q,Q1t!. ~2!

The above is valid provided that^C0uCT&Þ0.
To fix the notation, we will briefly summarize the esse

tial steps required for a calculation of the right hand side
the above equation at fixed values of the projection par
eter Q. A detailed review may be found in Ref. 5. Th
formalism—without numerical stabilization—to compu
time-displaced correlation functions follows Ref. 6. The fi
step is to carry out a Trotter decomposition of the imagina
time propagation:

e22QH5~e2DtHt/2e2DtHIe2DtHt/2!m1O@~Dt!2#. ~3!

Here Ht (HI) denotes the kinetic~interaction! term of the
model, andmDt52Q. Having isolated the interaction term
HI , one may carry out a Hubbard-Stratonovitch~HS! trans-
formation to obtain

e2DtHI5(
sW

expS (
x,y

cx
†Dx,y~sW !cyD , ~4!

wheresW denotes a vector of HS fields. For a Hubbard int
action, one can, for example, use various forms of Hirsc
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discrete HS decomposition.7,8 For interactions taking the
form of a perfect square, decompositions presented in Re
are useful.

The imaginary-time propagation may now be written a

e22QH5(
sW

UsW~2Q,0!1O@~Dt!2#, ~5!

where

UsW~2Q,0!5 )
n51

m

e2DtHt/2e(
x,y

cx
†Dx,y(sWn)cye2DtHt/2.

The HS field has acquired an additional imaginary-time
dex, since we need independent fields for each time in
ment.

The trial wave function is required to be a Slater determ
nant:

uCT&5 )
n51

Np S (
x

cx
†Px,nD u0&. ~6!

Here Np denotes the number of particles, andP is an Ns
3Np rectangular matrix whereNs is the number of single-
particle states. SinceUsW(2Q,0) describes the propagation o
noninteracting electrons in an external HS field, one m
integrate out the fermionic degrees of freedom to obtain

G,~Q,Q1t!5(
sW

WsWGsW
,

~Q,Q!BsW~Q,Q1t!, ~7!

where we have omitted the (Dt)2 systematic error produce
by the Trotter decomposition. In the above equation,

BsW~Q2 ,Q1!5H )
n5n111

n2

e2DtT/2eD(sWn)e2DtT/2 if Q2.Q1

BsW
21

~Q1 ,Q2! if Q1.Q2 ,
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wheren1Dt5Q1, andn2Dt5Q2,

MsW5PTBsW~2Q,0!P, WsW5
det~MsW!

(
sW

det~MsW!

,

and

GsW
,

~Q,Q!5RsW~Q!@LsW~Q!RsW~Q!#21LsW~Q!,

RsW~Q!5BsW~Q,0!P, LsW~Q!5PTBsW~2Q,Q!.

Restricting ourselves to models whereWs is positive defi-
nite ~such as the half-filled Hubbard, half-filled Kond
lattice, or attractive Hubbard models! we can sample
the probability distribution with Monte Carlo methods. F
each auxiliary-field configuration we then have to evalu
the quantityGsW

,(Q,Q)BsW(Q,Q1t) in a numerically stable
and efficient way. This corresponds to the subject of
paper.

At first glance it is clear that the evaluation o
GsW

,(Q,Q)BsW(Q,Q1t) is a numerically ill-posed problem
We illustrate this by considering free electrons on a tw
dimensional square lattice:

H52t (
^ iW, jW&

ciW
†
cjW . ~8!

Here the sum runs over nearest neighbors. For this Ha
tonian one has

^C0uckW
†
~t!ckWuC0&5^C0uckW

†
ckWuC0&exp@t~ekW2m!#, ~9!

where ekW522t@cos(kWaWx)1cos(kWaWy)#, aW x , and aW y being the
lattice constants. We will assumeuC0& to be nondegenerate
In a numerical calculation the eigenvalues and eigenvec
of the above Hamiltonian will be known up to machine pr
cisione. In the caseekW2m.0 and^C0uckW

†
ckWuC0&[0. How-

ever, on a finite precision machine the latter quantity w
take a value of the order ofe. When calculating
^C0uckW

†(t)ckWuC0&, this roundoff error will be blown up ex-
ponentially, and the result for large values oft will be un-
reliable.

In the PQMC approach and since, for a given HS confi
ration, we have independent electrons in an external fiel
similar form is obtained for the time-displaced Green fun
tion. TheBsW matrix plays the role of the exponential factor
and contains exponentially large and small scales, whe
GsW

,(Q,Q) contains scales bounded by order unity. Since

equally expect the resultGsW
,(Q,Q1t) to be bounded by

order unity, we will eventually run into numerical problem
whent becomeslarge.

In order to circumvent this problem, Assaad and Ima1

proposed doing the calculation at finite temperatures,
then taking the limit to vanishingly small temperatures. F
the example of free electrons, this amounts to perform
calculation via
07310
e

e

-

il-

rs
-

l

-
a

-

as
e

d
r
g

^C0uckW
†
~t!ckWuC0&5 lim

b→`

exp@t~ekW2m!#

11exp@b~ekW2m!#
. ~10!

Even if the eigenvalues are known only up to machine p
cision, the right-hand side of the above equation for large
finite values ofb is a numerically stable operation. To imple
ment this idea in the QMC method, Assaad and Imada c
sidered a single-particle HamiltonH0 which has the trial
wave functionuCT& as a nondegenerate ground state, a
then compute

GsW
,

~Q,Q1t![ lim
b→`

Tr@e2bH0UsW~2Q,Q!cy
†~t!cxUs~Q,0!#

Tr@e2bH0Us~2Q,0!#
.

~11!

Although the right-hand side of the above equation may
computed in a numerically stable way, the approach is cu
bersome and numerically expensive. In particular, for e
measurement, all quantities have to be computed fr
scratch since thead hoc inverse temperatureb has to be
taken into account.

Here we propose an alternative method. We will ag
start with the example of free electrons. Sin
^C0uckW

†(t)ckWuC0&51 and 0, we can rewrite Eq.~9! as

^C0uckW
†
~t!ckWuC0&5$^C0uckW

†
ckWuC0&exp@~ekW2m!#%t,

~12!

which involves only well-defined numerical manipulation
even in the large-t limit.

The implementation of this idea in the QMC algorithm
as follows. First one has to notice that the Green funct
GsW

,(Q,Q) is a projector:

GsW
,

~Q,Q!25GsW
,

~Q,Q!. ~13!

This is simply shown by carrying out a singular value d
composition of theNs3Np RsW(Q) andLsW(Q) matrices

RsW~Q!5Ur ,sWDr ,sWVr ,sW ,

LsW~Q!5Vl ,sWDl ,sWUl ,sW .

Here Ur(Ul) is a Ns3Np(Np3Ns) and column~row! or-
thogonal matrix,Dl ,r are diagonalNp3Np matrices, andVl ,r
unit upper triangularNp3Np matrices. For the equal-time
Green function, onlyUr ,sW andUl ,sW are important:

GsW
,

~Q,Q!5Ur ,sW@Ul ,sWUr ,sW#
21Ul ,sW .

Equation~13! then follows from
5-2
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@GsW
,

~Q,Q!#25Ur ,sW@Ul ,sWUr ,sW#
21@Ul ,sWUr ,sW#@Ul ,sWUr ,sW#

21Ul ,sW

5GsW
,

~Q,Q!.

This in turn implies thatGsW
,(Q1 ,Q3) obeys a simple com

position identity

GsW
,

~Q1 ,Q2!GsW
,

~Q2 ,Q3!5GsW
,

~Q1 ,Q3!, ~14!

since

GsW
,

~Q1 ,Q3!5GsW
, ,~Q1 ,Q1!, BsW~Q1 ,Q3!

5@GsW
,

~Q1 ,Q1!#2BsW~Q1 ,Q3!

5GsW
,

~Q1 ,Q1!GsW
,

~Q1 ,Q3!

5GsW
,

~Q1 ,Q2!GsW
,

~Q2 ,Q3!.

Using composition property~14! we can break up a larg
t interval into a set of smaller intervals of lengtht5Nt1, so
that

GsW
,

~Q,Q1t!5 )
n50

N21

GsW
,

~Q1@n11#t1 ,Q1nt1!.

~15!

The above equation is the generalization of Eq.~12!.
If t1 is small enough, each Green function in the abo
product is accurate, and has matrix elements bounded
order unity. The matrix multiplication is then numerical
well defined.

We illustrate the efficiency of the method for the Kond
lattice model:

HKLM52t (
^ iW, jW&,s

ciW,s
†

cjW,s1J(
iW

SW iW
c
SW iW

f . ~16!

Here iW runs over theL2 sites of a square lattice,^ iW, jW& cor-
responds to nearest neighbors,ciW,s

† creates a con-

duction electron withz component of spins on site iW,
and periodic boundary conditions are imposed.SW iW

f

5(1/2)(s,s8 f iW,s
†

sW s,s8 f iW,s8 , with sW the Pauli matrices. An
equivalent form holds for the conduction electrons. A co
straint of one fermion perf site is enforced. As shown in Re
10 at half-filling, the PQMC method may be used to ca
out sign-free simulations of the model.

Figure 1 plots the on-site time-displaced spin-spin cor
lation functions as well as the on-site Green function fo
636 lattice atJ/t51.2 and half-band filling. Here, we con
sider the total spin:SW iW5SW iW

f
1SW iW

c . Both methods based on Eq
~15! and~11! produce identical results within the error bar
07310
by

-

-
a

.

~Had we used the same series of random numbers, we w
have obtained exactly the same values up to roundoff er
which are of the order 1028.)

The important point however, is that the method based
Eq. ~15!, for this special case, more than an order of mag
tude quicker in CPU time than the calculation based on
~11!. A calculation following Eq.~15! involves matrix inver-
sions ~multiplications! of size Np3Np @(Np3N)(N3N)#.
Here N denotes the number of sites. To this we add t
many quantities required for the calculation are at hand d
ing the simulation, and do not have to be recalculated. On
other hand, the method based on Eq.~11! involves matrix
inversions and multiplications of size up to 2N32N.1 In this
approach, and for a given set of HS fields all quantities h
to be computed from scratch.

In summary, we have described an efficient method
the calculation of imaginary-time-displaced correlation fun
tions in the framework of the PQMC algorithm. The meth
is elegant and easy to implement in a standard PQMC co
and is an order of magnitude quicker than previously u
methods. We have demonstrated the efficiency of the met
in the special case of the two-dimensional Kondo latt
model. Given the ability of efficiently calculating time
displaced correlation functions at arbitrarily large imagina
times enables us to pin down charge and spin gaps10 as well
as quasiparticle weights.11 Dynamical properties may equall
well be obtained after continuation to real time via the ma
mum entropy method.12

We acknowledge S. Capponi for useful conversatio
The calculations were carried out on the Cray T3E of
HLRS ~Stuttgart!. M. Feldbacher thanks the DFG for finan
cial support, Grant No. MU 820/10-1.

FIG. 1. Imaginary-time-displaced on-site spin-spin~a! and
Green-function~b! correlation function. We consider a 636 lattice
at half-filling, and J/t51.2. In both ~a! and ~b! results obtained
from Eqs.~15! (n) and ~11! (,) are plotted.
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