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Efficient calculation of imaginary-time-displaced correlation functions in the projector
auxiliary-field quantum Monte Carlo algorithm
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The calculation of imaginary-time-displaced correlation functions with the auxiliary-field projector quantum
Monte Carlo algorithm provides valuable insigktich as spin and charge gapgo the model under consid-
eration. One of the authors and M. Imada proposed a numerically stable method to compute those dantities
Phys. Soc. Jpr65, 189(1996]. Although precise, this method is expensive in CPU time. Here we present an
alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement.
The method is based on the observation that for a given auxiliary field the equal-time Green-functiorGmatrix
is a projectorG2=G.
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For a given HamiltoniarH=E><,yc;rTX,ycy+HI and its discrete HS decompositidif. For interactions taking the

ground statéW¥ ), our aim is to calculate form of;’allperfect square, decompositions presented in Ref. 9
are useful.
(‘I’o|CT(T)Cx|‘I’o> The imaginary-time propagation may now be written as
Gry(7)= Y . =0. (1)
' (Wo|Wo)
Herec! creates an electron with quantum numbers,( ) e 20H=3" U20,0)+O[(A7)?] (5)
=g~ rN)gc e 7(H=uN) * and the chemical potentiak T o '

=Ey "'—Ey. H, corresponds to the interaction. Within the \yhere
projector quantum Monte CarlPQMC) algorithm, this
quantity is obtained by propagating a trial wawe,) func-

m
. . . . =4 -
tion along the imaginary time axfs: U(20,0) = Hl efAthlze;y chx’y(sn)cyefArHtIZ_
t —@H .t ~OH |y "~
(Woley(r)edWo) — (Wrle”™cy(r)ce PN Wy) The HS field has acquired an additional imaginary-time in-
(Wo|W¥o) B0 <qu|e*2H|qu> dex, since we need independent fields for each time incre-
ment.
= |lim G<(0,0+ 7). (2 The trial wave function is required to be a Slater determi-
O— nant:

The above is valid provided thatl | W) #0.

To fix the notation, we will briefly summarize the essen- N,
tial steps required for a calculation of the right hand side of Py = cip 0 6
the above equation at fixed values of the projection param- W) nll 2 «Pn [10)- ©
eter ®. A detailed review may be found in Ref. 5. The Here N

formalism—uwithout numerical stabilization—to compute X N,, rectangular matrix wherdl is the number of single-

time-displaced correlation functions follows Ref. 6. The ﬁrStparticIe states. Sincgz(20,0) describes the propagation of
step is to carry out a Trotter decomposition of the imaginaryyoninteracting electrons in an external HS field, one may

time propagation: integrate out the fermionic degrees of freedom to obtain

p denotes the number of particles, aRdis an Ng

e*Z@H _ (efATHt/2e7A7H|e7ATHt/2)m+ O[(AT)Z] (3)

Here H; (H,) denotes the kineti¢interaction term of the G<(0,0+7)=2, WG-(0,0)B(0,0+7), (7)
model, andnA r=20. Having isolated the interaction term s S

H,, one may carry out a Hubbard-StratonoVit¢tf) trans-  \yhere we have omitted the\¢)2 systematic error produced
formation to obtain by the Trotter decomposition. In the above equation,

e A=Y exp(xz; ciDyy(S)Cy |, (4) 0y
s ,

efATTIZeD(Sn)efATTIZ if ®2>®l

- - D .)= = 1
wheres denotes a vector of HS fields. For a Hubbard inter- B:(0,.0,) nmmr . _
action, one can, for example, use various forms of Hirsch’'s B; (0,0, if 6,>0,,
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wheren;A7=04, andn,A7=0,, exfd m(ei—p)]

+ .
(Woleo(7)cg o) = lim . (10
detMy) “ g 1+ exd Bleg— )]
M;=P"B4(20,0P, W;=——"—",
Z detMy) Even if the eigenvalues are known only up to machine pre-
s cision, the right-hand side of the above equation for large but
and finite values ofB is a numerically stable operation. To imple-
ment this idea in the QMC method, Assaad and Imada con-
G§<(®,)=Rg(®)[L§(®)R§()]*1|_§(), sidered a single-particle HamiltoH, which has the trial
wave function|¥) as a nondegenerate ground state, and
Ry(©)=Bi0®,0P, Ly(0)=P'By20,0). then compute

Restricting ourselves to models whétg is positive defi- —BHol 1@ +
nite (such as the halffiled Hubbard, half-filed Kondo G=(e @1 7= im e U52©:0)e,(NeUs(6.0]
lattice, or attractive Hubbard modglsve can sample s B Trle #HoU(20,0)]
the probability distribution with Monte Carlo methods. For (11
each auxiliary-field configuration we then have to evaluate
the quantityGE(@,)Bg(@,nLr) in a numerically stable Although the right-hand side of the above equation may be
and efficient way. This corresponds to the subject of thecomputed in a numerically stable way, the approach is cum-
paper. bersome and numerically expensive. In particular, for each

At first glance it is clear that the evaluation of measurement, all quantities have to be computed from

Gg(@,@)Bg(@,@)JFT) is a numerically ill-posed problem. Scratch since thed hocinverse temperatur@ has to be

We illustrate this by considering free electrons on a two-{@ken into account.

dimensional square lattice:

Here we propose an alternative method. We will again

start with the example of free electrons. Since
t .
Wolc:(7)cgWo)=1 and 0, we can rewrite E@9) as
He—tS oler. g (VoledDedvo) q
(i)

Here the sum runs over nearest neighbors. For this Hamil- <‘I’o|CE(T)C|Z|‘I’o>:{<‘I’o|CEC|Z|‘I’o>eXF[(€|Z— w1},
tonian one has (12)

T T
(Woleg(r)ciWo)=(Wolcici Woyexd 7(ek— )], (9 \yhich involves only well-defined numerical manipulations
- — - . even in the large= limit.

where e;= —2t[coska,) +-coska,)], ax, anda, being the The implementation of this idea in the QMC algorithm is
lattice constants. We will assuni#) to be nondegenerate. as follows. First one has to notice that the Green function
In a numerical callcula.tlon the eigenvalues and elggnvector@§(®,) is a projector:
of the above Hamiltonian will be known up to machine pre- *°
cisione. In the case;— u>0 and(\Po|cEc,;|\Ifo>EO. How- _ _
ever, on a finite precision machine the latter quantity will G, (®,®)2=G§ (0,0). (13)
take a value of the order ofe. When calculating
<‘l’0|CE(T)C|2|‘PO>, this roundoff error will be blown up ex- This is simply shown by carrying out a singular value de-
ponentially, and the result for large values ofvill be un-  composition of theNsX N, R5(0) andL¢(©) matrices
reliable.

In the PQMC approach and since, for a given HS configu- Ry(0)=U, D, V, :,
ration, we have independent electrons in an external field, a o
similar form is obtained for the time-displaced Green func-
tion. TheB; matrix plays the role of the exponential factors, Ls(0)=V, DU s.
and contains exponentially large and small scales, whereas
G§<(,®) contains scales bounded by order unity. Since we-ere U, (U) is a NgXNy(N,XNg) and column(row) or-

equally expect the resuls: (0,0 +17) to be bounded by thogonal matrixp, , are diagonaN, < N, matrices, and/, ,

order unity, we will eventually run into numerical problems é?ge%pfrzﬁrcggn%ﬂ?wpfaﬁ& LTa*trz;(r:zsi.mF?)rrt;Z?' equal-time
when 7 becomedarge. » onlydy 5 s p :

In order to circumvent this problem, Assaad and Intada
proposed doing the calculation at finite temperatures, and GS(0.0)=U. TU, -U. -1 tU, -
then taking the limit to vanishingly small temperatures. For $(©.0)=U, JUUr sl Vs
the example of free electrons, this amounts to performing
calculation via Equation(13) then follows from
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[GZ(0,0)]=U, U, U, ] [, U, 5[V, U, MU, ¢ &

In (0| 8, () S, (0) 1%o)

=G:(0,0).

This in turn implies thaGg(G)l,g) obeys a simple com-
position identity

G:(0,,0,)G;(0,,05)=G2(0,,05), (19 -
%, I (To| X2, ¢, (7) €0 (0) [ To)

since —2.0
-3.0
G;(01,05)=G;,(0,,0,), By0,0y) ~40
-5.0
=[G;(01,01)]°By(01,05) oo
=G:(0,,0,)G:(0,,0;) 7.0
_ G§<(®1 ,2)G§(2,®3). 0.00 2.00 4.00 i_(]; 8.00 10.00 12.00

Using composition property14) we can break up alarge  FIG. 1. Imaginary-time-displaced on-site spin-spia and
7 interval into a set of smaller intervals of length- N7y, SO  Green-function(b) correlation function. We consider a6 lattice
that at half-filling, andJ/t=1.2. In both(a) and (b) results obtained
from Egs.(15) (A) and(11) (V) are plotted.
N—1
G:(0,.0+n=]] GI(®+[n+1]7,,0+n7r)). (Had we used the same series of random numbers, we would
n=0 have obtained exactly the same values up to roundoff errors
(19 \which are of the order 1¢.)
The important point however, is that the method based on
The above equation is the generalization of H@2). Eq. (15), for this special case, more than an order of magni-
If 7, is small enough, each Green function in the abovetude quicker in CPU time than the calculation based on Eg.
product is accurate, and has matrix elements bounded KyL1). A calculation following Eq(15) involves matrix inver-
order unity. The matrix multiplication is then numerically sions(multiplicationg of size NoX N, [(NyXN)(NXN)].

well defined. Here N denotes the number of sites. To this we add that
We illustrate the efficiency of the method for the Kondo Mmany quantities required for the calculation are at hand dur-
lattice model: ing the simulation, and do not have to be recalculated. On the

other hand, the method based on Etl) involves matrix
inversions and multiplications of size up tdix 2N.* In this
- approach, and for a given set of HS fields all quantities have
Him=—t 2 C?,UCF,UJFJZ STS.f (16) topge computed fron?scratch. |
(Lo ! In summary, we have described an efficient method for
the calculation of imaginary-time-displaced correlation func-
Herei runs over thel? sites of a square latticéj,j) cor-  tions in the framework of the PQMC algorithm. The method
responds to nearest neighbor&;} creates a con- IS €legantand easy to implement in a standard PQMC code,
) ) 7 s and is an order of magnitude quicker than previously used
duction electron withz component of spino- on site i, methods. We have demonstrated the efficiency of the method
and periodic boundary conditions are impose&;  in the special case of the two-dimensional Kondo lattice

:(1/2)20‘0,]:::0(;0’0,]:{’0,' with o the Pauli matrices. An Model. Given the ability of efficiently calculating time-

equivalent form holds for the conduction electrons. A Con_dlsplaced correlation functions at arbitrarily Iar%? imaginary

. : o . times enables us to pin down charge and spin gagswell
straint of one fermion pdrsite is enforced. As shown in Ref. : icl iahtd D ical . I
10 at half-filling, the PQMC method may be used to carryas quasiparticle weig fs. ynamical properties may equally

an-f mulat £ th | well be obtained after continuation to real time via the maxi-
out sign-free simulations of the model. mum entropy methot?

Figure 1 plots the on-site time-displaced spin-spin corre-
lation functions as well as the on-site Green function for a We acknowledge S. Capponi for useful conversations.
66 lattice at‘]/t:}'sz‘nd half-band filling. Here, we con- the cajculations were carried out on the Cray T3E of the

sider the total spinS;=S:+ ;. Both methods based on Egs. HLRS (Stuttgari. M. Feldbacher thanks the DFG for finan-
(15) and(11) produce identical results within the error bars. cial support, Grant No. MU 820/10-1.
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