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We discuss a new functional-integral formulation of interacting fermion systems on a lattice such as the

Anderson or Hubbard models: the fermion-fermion interaction is eliminated by introducing auxiliary Ising

variables. The resulting model for a d-dimensional quantum system is a (d+1}-dimensional Ising model

with complicated interactions. The new transformation is particularly useful for performing numerical

studies of these models using Monte Carlo techniques. We study its convergence properties and compare

it with the usual Gaussian formulation for the case of the Hubbard model.

The Hubbard-Stratonovich transformation' is based on
the identity

exp( —A') - 42m Ch exp( ——x' —xA )2 U 2

where A is a quantum-mechanical operator. This transfor-
mation allows for the mapping of an interacting fermion
problem to a system of noninteracting fermions coupled to a
fluctuating external field. It has been widely used in solid-
state physics to study models which have a two-body in-

teraction of the form

merits of (3)-(5) have been extensively discussed in the
literature.

Consider a system described by a Hamiltonian

H =Ho+H

where Ho is bilinear in fermion operators and Hi is given by
Eq. (2). In order to use the Hubbard-Stratonovich transfor-
mation, one has to use a functional-integral formulation
since Ho and Hi do not commute in general. The partition
function for the system can be written as

H~= Untn l (2)
L

N(Hp H+i) dT(Hp+H()Z- Tre ~Tr e
1

where n is the site occupation number of an electron of
spin o. Models of this type include the Anderson model, "
where the interaction occurs at one impurity site, and the
Hubbard model, '~ where the interaction occurs at every lat-
tice site. In order to transform the interaction term so that
the square of an operator appears, one of the following ex-
pressions is used:

Il flit l (II f Ill) +
Z

(Il f +Ill)

—hrHO —4tH )
I.

-Tr e e
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In the last equality, an error of order

0 (hr i[Hp, H) ])
has been made in breaking up the exponential, which be-
comes negligible as hr 0. In that limit, Eq. (6) is usually
written as

Il f II l + l (N f + N l ) z (N f + II i ) (4) rP
Z-TrT, exp — d7 (Hp, +Hi, )4 0

nfni- 4(nf+nf) —~(nf —ni) (5)

With (3) or (4) one introduces a single auxiliary field, while

with (5) two auxiliary fields are introduced. The relative
I

where the subscript v on the operators means they are sub-
ject to time ordering. One can now use Eqs. (I) and
(3)-(5) to eliminate the interaction. For example, using
the form (3) one obtains

Iep rap UZcc Dx(r)exp — drx'(r) TrT,exp — dr[Hp + JUx(r)n, f
— fN]+ —(n, f+n, i)40 a 0

(9)

which describes a system of noninteracting particles moving
in a fluctuating real field x(r) which couples to the z com-
ponent of the spin.

The purpose of this paper is to point out that for the class
of models where the Hubbard-Stratonovich transformation
has been used in solid-state physics there exists another
possible transformation. Since the fermion occupation
number can only take the values 0 or 1, it is easy to con-
vince oneself that a fluctuating field that takes only two
discrete values is sufficient to eliminate the fermion-
fermion interaction. Thus we will introduce an Ising vari-
able o- which takes the values +1 and —1. The following

tanh'- tanh(hr U/4)

tanh b = —tanh(hr U/4)

(I la)

(1 lb)

identities are easily proved:

exp( —/)r Un f n i ) =
z

Tr exp[2a o (n f
—n l )

1

—
i Uhr(n f + n i)] (10a)

exp( —br Un f n i) =
z Tr exp[2bo (n f + n i

—1)1

——U 5r ( n f + n i )], (10b)

with
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If one wants to work only with real quantities, Eq. (10a) would be used for U) 0 and Eq. (10b) for U (0. One can, of
course, also introduce a "two-field" version:

with

exp( —hrUntnt)- ~ Tr, exp[2coi(nt —nt)+2cio2(nl+nl)]i

tanh'c = tanh(hr U/g)

(12)

(13)

For example, using (10a), one obtains for the partition function

i

Z = Tri t, &lTr T exp —Xhr [Ho, + ho (r)(n t, —n t, ) —
z

U(n I, +n l ) ] (14)

arctanh[tanh(hr U/4)]' ' (15)

The parameter I/6 r plays the role of a high-energy cutoff
and is determined by requiring the error given by Eq. (7) to
be small. A sufficient condition is that it is larger than all
other energy scales of the problem. Equation (14) is de-
fined on a discrete time lattice of L =P/b, r points. In the
usual Gaussian formulation, d7 can be reabsorbed in the
definition of the fluctuating field and the continuum limit
can be formally taken, but h~ is still implicit in the integra-
tion measure. Here, since we work with fixed-length Ising
spins, h, v. appears explicitly in the coupling constant.

The fermion degrees of freedom in Eq. (14) can now be
eliminated by taking the fermion trace explicitly, and one
obtains

1

Z = Trl &, &i exp, Trln I+ T,exp —XttrK[tr(T)], , (16)

where K is a matrix describing the single-particle motion de-
fined by the exponent of Eq. (14). Equation (16) describes
a one-dimensional Ising model with complicated multispin

H t c cj + U 'gn lnil —g X(nj (nt ) )
i'

(17)

and choose the chemical potential p, = U/2 so that the band
is half full. %e consider the case U &0 and use the
transformation (10a). The averages of any combination of
fermion operators can easily be obtained by averaging ap-
propriate combinations of fermion Green's functions. In

I

interactions. In general, for a d-dimensional quantum sys-
tem this procedure will yield a (d+ I)-dimensional Ising
system.

The trace over Ising spins in Eq. (16) can be evaluated
term by term for small systems or using Monte Carlo tech-
niques for large systems. Since the phase space over which
the trace is performed is much smaller in the Ising formula-
tion than in the Gaussian one, one can expect any numeri-
cal calculation to converge faster.

%e apply the transformation to the Hubbard model, de-
fined by the Hamiltonian

TABLE I. Convergence of the Ising functional-integral formulation as function of A~ for a two-site
Hubbard model. P - 2. The num ber in brackets is the statistical error in the last f igure.

(1 e -h~U) —i

E (n;tn (S,S,+ i) X(o;o;+i) (cinci+ la )

0.5
0.25
0.125
0.0625
Exact

0.5
0.25
0.125
0.0625
Exact

—1.663(1)
—1.549(1)
—1.510(3)
-1.soo(1)
-1.496

—1.696(4)
—1.379(6)
—1.239(2)
—1.180(3)
—1.177

0.1354(5)
0.1741(5)
0.1867(4)
0.1907(5)
0.1916

0.0580(5)
o;11oo(s)
0.1310(3)
0.1363(5)
0.1384

U=2

U 4

—0.703(1)
—0.621(1)
-o.s94(1)
-o.s8s(1)
-0.5825

—0.868(3)
—0.750(5)
—0.704(2)
-o.681(s)
—0.6824

—0.708(9)
—0.619(11)
—0.605(6)
—0.589(16)
—0.5825

—0.870(7)
—0.755 (11)
—0.703 (5)
—0.687(4)
—0.6824

-0.4834(3)
—0.4743 (5)
—0.4708 (9)
—0.4703 (5)
—0.4697

—0.482(1)
-0.4ss(1)
—0.441(1)
—0.431(1)
—0.4327

0.5
0.25
0.125
0.0625
Exact

—1.84(2)
—1.29(2)
—0.91(2)
-O.78(2)
—0.7427

0.0084(3)
0.0381(7)
o,os 9(1)
0.065(2)
0.06646

—0.95(2)
—0.86(4)
—0.79(2)
-O.74(2)
—0.7350

—0.95 (2)
-O.86(5)
—0.79(20
—0.74(4)
—0.7350

—0.476(6)
—0.398(7)
—0.346(6)
—0.328(9)
—0.3186
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TABLE Il. Spin-spin correlation functIon 6(Iz ly) [Eq (19)j for a two-dimensional Hubbard model on a

4&4 lattice. U-2, p 3, 4r =0.25. Results were obtained from averaging over 500 lattice sweeps. In the

Gaussian formulation, the step size was chosen so that the acceptance fraction was 0.5. We also show exact
results for U=O for comparison.

(0,0) (0,1) (0,2) (1,2) (2,2)

Ising
Gaussian
Exact (U=0)

0.638(1)
0.637(2)
0.5

—0.113(4)
—0.115(9)
—0.0699

0.027(5)
0.024 (11)
0

0.024(4)
0.019(9)
0

—0.025 (4)
—0.025 (8)
—0.0077

0.033(4)
0.031(9)
0

., y) =
N

X(S(ly)S(l+I,J+I„))
1 (19)

lj

in a two-dimensional Hubbard model on a 4x 4 lattice [(i,j )
denote the (x,y ) coordinates].

In summary, we have discussed a new transformation for
interacting fermion systems on a lattice which maps the
models into Ising models in one higher dimension. It
should be interesting to explore the effectiveness of various
approximate techniques that have been used with the
Gaussian formulation when used with the Ising formulation.
For example, with use of the Gaussian formulation the
Hubbard model is often reduced to a binary-alloy model by
restricting the field to take only two values. With the Ising
formulation, the mapping to a binary alloy can be obtained
directly. As another example, the single-impurity Anderson
model has been mapped to an Ising model with I/R' in-

teractions by choosing a class of important paths in the
Gaussian functional integral. ' We believe that his mapping
can be obtained more directly and have a wider range of
validity with use of the Ising formulation. We have ex-
plored the convergence of the formulation as function of
the time-slice size 47 for the case of the Hubbard model
and have shown that it is more convenient than the usual
Gaussian formulation for numerical calculations. A detailed
Monte Carlo study of the properties of the two-dimensional
Hubbard model is in progress.

(S;(r)S~(0))= (1 —e '") '(o;(r)a J(0)), (18)

with S; = n; l
—n, t. (For r = 0, this relation does not hold

for i =j). For an attractive Hubbard model one would use
(10b) and the o-o correlations would be related to fermion
charge-charge correlations.

We compute the thermodynamic averages using a Monte
Carlo method. To compute the fermion determinant at
each step, we use the powerful algorithm proposed recently

by Blankenbecler, Scalapino, and Sugar, 9 which involves N'
operations per update (N number of spatial sites) and

yields an exact determinant.
To assess the convergence of the procedure, we study

various quantities as a function of h~ for the case N = 2,
where exact results are easily obtained. Table I shows
results for P= 2 and various values of hr for the cases
U-2, 4, and 8. The results to converge to the exact
answers as 4~ 0. For an accuracy of a few percent, it ap-
pears adequate to choose E~U=0.5. For other tempera-
tures, the errors found are similar. Note that the statistical
error in computing spin-spin correlation functions through
Eq. (18) is larger than using fermion Green's functions.

We have compared the performance of the Ising formula-
tion with the one based on the Gaussian formulation, Eq.
(9). For small systems, the advantage of the Ising formula-
tion is obvious, since one can easily cover a significant frac-
tion of the total phase space. We find that also for large
systems the Ising formulation converges more rapidly and
yields smaller statistical errors, a factor of 2 or better. As
an example, Table II shows results for the spin-spin correla-
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