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We have studied the two-dimensional Hubbard model on a square lattice with nearest-neighbor

hopping. We first discuss the properties of the model within the mean-field approximation: Be-
cause of the form of the band structure, some peculiar features are found. We then discuss the
simulation algorithm used and compare simulation results with exact results for 6-site chains to test
the reliability of the approach. We present results for thermodynamic properties and correlation
functions for lattices up to 8&&8 in spatial size. The system is found to be an antiferromagnetic in-

sulator for all values of the coupling constant at zero temperature in the half-filled-band case, but

the long-range order is much smaller than predicted by mean-field theory. We perform a finite-
size-scaling analysis to determine the character of the transition at zero coupling. For non-half-

filled-band cases, our results suggest that the system is always paramagnetic, in contradiction with

Hartree-Fock predictions. The system does not show tendency to ferromagnetism nor triplet super-

conductivity in the parameter range studied. We also discuss some properties of the attractive Hub-

bard model in the half-filled-band case.

I. INTRODUCTION

The Hubbard model' is defined by the lattice Hamil-
tonian:

I=gt, ,(c; c, +H.c.)+U+n;, n;, pg(n;, —+n;, ) .

It describes a single s band in a tight-binding basis, with a
local electron-electron repulsion U for electrons of oppo-
site spin at the same atomic orbital. The model is thought
to be appropriate to describe the main features of electron
correlations in narrow energy bands, leading to collective
effects such as itinerant magnetism and metal-insulator
transition, and has been often used to describe real materi-
als exhibiting these phenomena. A detailed justification
for Eq. (1) as a model for narrow-band systems has been
given by Hubbard.

Although simple in appearance, the model cannot be
solved exactly except in one dimension. Even there, the
exact solution provides only partial information about the
system. In more than one dimension, the model is not ex-
actly solvable and a variety of approximate techniques
have been used to study it, among others mean-field
theory, Green's-function decoupling schemes, ' functional
integral formulations, and variational approaches.
These techniques are uncontrolled (except perhaps for
weak coupling) and often give conflicting results, so that
it is fair to say that no general agreement exists on what
the properties of the model are.

An important approach to the problem is the study of
(small) finite systems. In one dimension, this was first
done by Shiba and Pincus for chains of up to 6 sites.
More recently, exact diagonalization of chains of up to 12
sites have been performed. Because in exact diagonaliza-
tions the computer time needed for a calculation increases

exponentially with the size of the system, the method be-
comes of limited use in more than one dimension. Results
for higher-dimensional lattices have been recently report-
ed by Kawabata (for systems of up to 8 sites) and by
Takahashi' for the somewhat simpler case where U = Oc

(up to 12-site systems). However, these systems are too
small to allow one to draw conclusions about the proper-
ties of the model in the thermodynamic limit.

An alternative method to study finite lattices is Monte
Carlo simulations. In one dimension, an algorithm exists
where the computer time increases lE'nearly with the size
of the system, " and chains of up to 40 sites have been
studied with modest amounts of computer time. " ' In
more than one dimension, no algorithm where the com-
puter time increases linearly with the size is known. Here,
we have used a discrete Hubbard-Stratonovich transfor-
mation to convert the problem into one of free electrons
interacting with a time-dependent Ising field, ' together
with an exact updating algorithm for the fermion Green's
function' to compute the relative weights of the Ising
configurations. The computer time in this algorithm in-
creases with the cube of the size of the system, and we
have used it to study lattices of up to 64 sites (8&(8 two-
dimensional lattices). This is well beyond the reach of ex-
act diagonaliz ation techniques at present, and large
enough to allow us to draw some conclusions about the in-
finite system. We have recently reported results of simu-
lations on this model in a short communication. ' Here,
we discuss the approach in more detail and present addi-
tional results.

We discuss results of our study for the two-dimensional
square lattice with nearest-neighbor hopping only. The
properties of the model are sensitive to the band structure,
and two distinct features of our model in the half-filled-
band case, namely nesting of the Fermi surface and a
singularity in the density of states at the Fermi energy,
determine much of its properties. A different band struc-
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ture (including next-nearest-neighbor hopping, for exam-
ple) should have rather different properties, and will be
discussed in a future publication. This feature of fermion
models restricts the "universality classes" more than, for
example, in classical spin models, where the properties are
usually independent of the details of the short-range cou-
plings. Nevertheless, we believe our results for the half-
filled band should apply at least qualitatively for models
with nested Fermi surface. For the non-half-filled band,
we believe our conclusions are quite general.

We compare our results with predictions of Hartree-
Fock theory, thus illustrating the effect of fluctuations in
changing the mean-field solution. A comparison with
more sophisticated approximate theories provides infor-
mation about the reliability of these schemes and will be
discussed elsewhere.

The main question addressed in this paper concerns
magnetism due to itinerant electrons. Can the Hubbard
model provide a sensible description of it? Because our
model is two dimensional, we can only have magnetic
long-range order in the ground state; at T ~ 0, a continu-
ous symmetry cannot be broken in two dimensions. We
find that the model does exhibit long-range antiferromag-
netic order in the ground state for the half-filled-band
case, even in the presence of a substantial delocalization of
the electrons. The system, however, does not show "me-
tallic magnetism:" only for the insulating half-filled case
there appears to be magnetic long-range order. In addi-
tion, it does not display any tendency to ferromagnetic
correlations, let alone ferromagnetism, in the range of in-
teraction and band filling studied. We believe that with a
modified band-structure tendency to ferromagnetism
could be enhanced, but it is unlikely that ferromagnetic
long-range order will appear. We also do not find any
tendency towards triplet or singlet pairing in our model.

Concerning the metal-insulator transition, the model
discussed here is an insulator for any U & 0 (in the half-
filled case) due to the nesting of the Fermi surface. In
that respect, the model is similar to the one-dimensional
Hubbard model where nesting always occurs.

The paper is organized as follows. In the next section
we discuss some features of the model in the noninteract-
ing case, the Hartree-Fock solution, and the strong-
coupling limit. In Sec. III we discuss the simulation
method used and compare simulation results with exact
results for a 6-site system with the exact diagonalization
results of Shiba, to test the reliability of our approach. In
Sec. IV we present results of simulations for the half-filled
case, and in Sec. V for some non-half-filled band cases.
We discuss briefly the implications of our results for the
two-dimensional attractive Hubbard model in Sec. VI, and
summarize our conclusions in Sec. VII.

where (i,j ) denotes nearest neighbors and the sum runs
over sites of a two-dimensional square lattice. The chemi-
cal potential p is U/2 for a half-filled band. We consider
here the case of repulsive interactions ( U & 0).

The single-particle eigenstates for the noninteracting
case (U =0) have energies

ek ———2r (cosk„+cosky ) —p,
(2.2)—&x,y X y&n

2&
kx,y

=
& nx, y~

x,y

so that the bandwidth is W =St The. ground state for the
noninteracting system is obtained by filling the negative
energy states. Figure 1 shows the Fermi surface for vari-
ous band fillings for an infinite two-dimensional lattice.
The Fermi surface in the half-filled case is "nested, " i.e., a
reciprocal-lattice vector [(m /a, m/a) or ( —m /a, ~/a)]
maps an entire section of the Fermi surface onto another.
This is due to the fact that our lattice is bipartite, and the
kinetic energy connects only one sublattice to the other.
As is well known, this has important consequences for the
properties of the model. '

Another important feature of the noninteracting system
appears in the density of states, defined by

g(e)= +6[a—e(k)],
k

(2.3)

1.0

0.5

$y/7T 0.0

—05

which is shown in Fig. 2. The density of states displays a
logarithmic singularity g (e)-ln(e/4t) for small e. From
topological arguments, one can show that such a singular-
ity will always occur in a two-dimensional system. How-
ever, the fact that it occurs at the Fermi energy for the
half-filled case, for the same energy where nesting occurs,
is special to the nearest-neighbor-hopping model con-
sidered here.

II. THE MODEL —1.0
—1.0 —0.5 0.0 0.5 1.0

We consider the model defined by the Hamiltonian:

t g (c; c~ +H. c. )+ U g—n;, n;, —p g ( n;, +n;, ),
(~,j&

(2.1)

FIG. 1. Fermi surfaces for electrons on a two-dimensional
square lattice with nearest-neighbor hopping only. Band fillings
are p=0.25, 0.5, . . . , 1.5 starting from the inner surface. Note
that the Fermi surface for the half-filled case is nested.
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FIG. 2. Density of states for noninteracting electrons on a
two-dimensional square lattice with nearest-neighbor hopping-.
The singularity at the origin is logarithmic.

f (&k+q) f(ek)
xp(q) = ——

&k+q —&k

with f(e) the Fermi function:

(2.4)

The q-dependent zero-frequency susceptibility (per spin)
for the noninteracting case is given by

2Xp(q)
x(q)=

1 —UXp(q)
(2.10)

+Up ((n;„)n, , +n;„(n;, ) —(n;, )(n;, ))

For the half-filled case, the divergences in Xp indicate in-
stabilities for arbitrarily small values of U at both q =0
and q =(m, m). Because the divergence in Xp is stronger
for q =(m, m.), RPA predicts a transition to an antifer-
romagnetic phase at a higher temperature than for the fer-
romagnetic phase in the half-filled case. For the non-
half-filled case, RPA predicts a transition at a finite value
of U, since the susceptibility is nondivergent. The transi-
tion wi11 be to states defined by the wave vector q for
which Xp is maximum, which is a decreasing function of
the band filling. However, because we are dealing with a
two-dimensional model with a continuous symmetry, it is
clear that no transition to a state with magnetic long-
range order can occur expect possibly for T =0.

We now discuss the Hartree-Fock (HF) solution for this
model. This has been discussed in detail by Penn for the
three-dimensional case. %'ithin the Hartree-Pock ap-
proximation, the Hamiltonian is

HHF = t g C('~CJ~
&Ej &

f(e)= 1

ep'+1

For q =0, we have

(2.5)

—pg(n;, +n;, ) . (2.11)

Xp(q =0)= I«g(e) — ~ g(eF),B

Be r 0
(2.6)

T
Xp(q =0)-—ln

i.e., the usual Pauli result. In the half-filled case, the sus-
ceptibility diverges as T—+0 due to the singularity in the
density of states, as

(n;, ) =n+( —1)'m,

( n;, ) =n —( —1)'m,

which yields the gap equation:

(2.12)

For the half-filled case, the appropriate solution is the an-
tiferromagnetic one:

The staggered susceptibility is given by

1 f ( &k) f(&k)— —
Xp(q =~)=—g

2~k

d 2I
2 (&2 +g2)1/2

6= Um,

(2.13a)

(2.13b)

deg(e)-f ( e) f(e)——
2E

(2 8)

T&p(q=m)- ln— (2 9)

In the usual case where one has a nested Fermi surface
this gives a logarithmic divergence of the susceptibility at
low temperatures. Here, however, we have in addition the
singularity in the density of states, and the low-
temperature behavior in the half-filled case is

1=U
p (e2+ g2)1/2

(2.14)

and due to the singularity in the density of states, we find
for the gap

~-t "~'/U (d =2) (2.15)

which has a solution with m&0 for arbitrarily small U
due to the nesting of the Fermi surface. The features of
the singularity are, however, different from the usual case.
Rewriting Eq. (2.13a) as

i.e., a stronger divergence than for the q =0 susceptibility.
For the non-half-filled case, the q-dependent susceptibility
is finite as T~O.

In contrast, both in one and three dimensions there is no
singularity at the Fermi energy for the half-filled case,
and the gap within HF behaves as
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(n;, )=n+m,

(n;, )=n —m,
(2.17)

and paramagnetic ones, with rn =0. The Hartree-Fock
phase diagram, obtained by choosing the solution that
gives the lowest energy (if more than one solution exists)
is shown in Fig. 3, and is rather similar to the one ob-
tained in d =3 by Penn. Note that for large U and fil-
lings close to 1 ferromagnetism is predicted to occur.
This is also in agreement with the exact results by Nagao-
ka, who found the ferromagnetic state to be the ground
state for U = ac and one hole in a half-filled-band system.
However, we will see that our simulations do not give any
indication that there is a tendency towards ferromagnetic
ordering.

Finally, we review the strong-coupling limit of the
model Eq. (2.1) for the half-filled-band case. To second
order in the hopping the model is equivalent to an antifer-
romagnetic Heisenberg model, defined by the Hamiltonian

4t~ tt=+ g S; S,. (2.18)

with S the Pauli matrices. According to the finite lattice
calculations of Oitmaa and Betts, ' this model has antifer-

(2.16)

This particular feature of the model under consideration
gives a stronger tendency to antiferromagnetic ordering
than in the usual case. ' It should be remarked that the
behavior, Eq. (2.15), is a consequence of the fact that both
the nesting of the Fermi surface and the Van Hove singu-
larity in the density of states occur at the same energy, the
Fermi energy for the half-filled case. One can easily con-
struct other band structures in d =2 where both features
occur at different energies, or where the nesting is absent
altogether, which will then have rather different proper-
ties. The logarithmic singularity, however, is required by
topology in d =2 so that it always occurs. In the absence
of nesting, it may give a tendency for ferromagnetic corre-
lations.

For the non-half-filled band case we consider, in addi-
tion to (2.12), the possibility of ferromagnetic solutions:

I

0.5

FIG. 3. Hartree-Fock phase diagram for the two-dimensional
Hubbard model. A, F, and P denote antiferromagnetic, fer-
romagnetic, and paramagnetic ground states, respectively.

romagnetic long-range order in the ground state, approxi-
mately 50%%uo reduced from the classical Neeel state due to
quantum fluctuations. The existence of long-range anti-
ferromagnetic order for the case 0& U & oo, where both
spin and charge fluctuations occur, was an open question;
in this work we believe we have established that the model
indeed has antiferromagnetic order for 0& U & oo in the
half-filled-band case.

The behavior of the magnetic susceptibility at low tem-
peratures in the limit where Eq. (2.18) is valid follows
from a spin-wave analysis. Assuming a linear dispersion
relation for the spin-wave energy, e(k) —ck, we obtain

1 Pk7-—J kdk —TlnT
T (elk —1)2

(2.19)

X(q =2kF) ——,1

T ' (2.20)

which happens to be the same as the Curie law because we
are in two dimensions. Note that the susceptibility in the
large- U limit vanishes as T~O [Eq. (2.19)], in contrast to
the U=0 limit where it diverges [Eq. (2.7)].

at low temperatures. The staggered susceptibility should
be the same as the susceptibility for a ferromagnet, with
e(k) -ck, and yields

III. THE SIMULATION

The simulation was constructed using an Ising functional integral formulation recently introduced. The partition
function is written as

-~~IIZ=Tre ~ =Tr + e =-Tr + e exp br Ug n;, n& —
p g (n;„+n;,)—

I=1 1=1
(3.1)

with Ho the kinetic energy and I3=Lbr. The error in the breakup in Eq. (3.1) is of order O(br tU) The electron-.
electron interaction was eliminated using the identity'

—hv Un;)n;J h~U
e '" "=Tr exp A,o(n;, —n;, ) — (n;, +n;, ) (3.2)

with

A, =2 arctanv'tanh(br U/4) (3.3)
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and cr=+1. The partition function is then

L

g e "exp I [—Aa —br(p —U/2)]n;, I
1=1

—~HZ=Tr Tr g e exp Acr(n;, n—;,) b—r(p —U/2)(n;, +n;, )
I=1

L
=Tr Tr ff e 'expI [A,o —b,v'(p —U/2)]n;, [

1=1
(3.4)

Denote P(o)=
~

.detO, detO,
~

(3.13)

)
—drKe v {I)

t fo—r i,j nearest neighbors,

0 otherwise,

and define the operators

—Ere; K; e e; V,. (l)e;ig Je t sD,(a)=e
so that the partition function is

V~(l) =5;J[Aacr;(, )t) b,r—()u U—/2)],

(3.5)

(3.6a)

(3.6b)

(3.7)

and have to compute the average sign of the product of
determinants. We find that the product of determinants
does become negative for certain field configurations, but
the average sign is always well behaved and does not go to
zero rapidly as P or the lattice size increases, so that it
does not represent a problem for doing Monte Carlo simu-
lations.

We use the heat-bath algorithm to perform the sum
over Ising spins. If R is the ratio of the new to the old
determinant for fermion spin a on flipping a given Ising
spin, it is flipped with probability

a=+1 1=1
(3.8) I'= R,R,

(3.14)

=—Tr detO, detO, . (3.9)

This identity was proved by Blankenbecler et al. , ' using
Grassmann variables. For the reader unfamiliar with
Grassmann algebras, we give an elementary derivation of
this result in the Appendix.

The remaining sum over Ising spins in Eq. (3.9} is per-
formed using a Monte Carlo technique, taking as
Boltzmann weight the product of determinants in Eq.
(3.9). For the case of a half-filled band, it is easy to show
that this product is positive for arbitrary cr configurations.
Consider the particle-hole transformation

d; =(—I)'c;
(3.10)

c).~ego' 1—d

For the half-filled band, p= U/2 and we have from Eq.
(3.4)

so that

—5 Hot —A,cr;~)d;l A,cr; 1)

i=1
(3.11)

A, g crk(l)

detO, =e " detO, (3.12}

and the product of determinants in Eq. (3.9}is positive de-
finite, so that it can be used as a Boltzmann weight. For
the non-half-filled band, we define the Boltzmann weight
as

We can take the trace over fermions explicitly, since there
are only bilinear forms in fermion operators, and obtain

Z= Tr +det[1+Bl (a)BI )(a) . B)(a)]

&P, Q, &=

Tr~&P;QJ &detO, detO,
z

TrP;QJ g DI(a)
l, a

detO'detO,

(3.16)

(3.17)

It is easy to obtain the appropriate formulas by using the

To compute R, we use the procedure introduced by
Blankenbecler, Scalapino, and Sugar' which involves up-
dating the full Green's function exactly when a move is
accepted. This takes the bulk of the computer time in the
calculation, X operations per update, with N the number
of spatial sites. After several updatings, the Green's func-
tion degrades due to rounding errors and has to be recom-
puted from scratch. This makes a non-negligible differ-
ence in terms of computer time only if it has to be done
every time slice or two. In practice, we started our simu-
lations by recomputing G from scratch every 10 time
slices and checking whether it had degraded by more than
1%. If so, we recomputed it more often, which we had to
do for large values of the interaction.

We now consider the evaluation of average quantities.
First, it is easy to show that'

& {n;,(r) — (n))r(n, (0)—n, (0)) &

=(1—e '
) '&a;(r)p.,(0) &, (3.15)

so that we obtain fermion spin-spin correlation functions
simply from correlation functions of the Ising spins. For
other correlation functions, we do not have enough infor-
mation in the Ising variables but have to average over ap-
propriate fermion matrices. For an equal time correlation
of the operators P; and Qz we have

Tr TrP;QJ + +D)(a)
«P;Q, »=
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transformation to normal modes, Eq. (A6), of the entire
product of factors in (3.17). For example, consider the
single-particle Green s functions (we omit spin indices for
simplicity):

Similarly,

(c c, )= Bl B, 1

1+BL . - B1
(3.19)

(c;ci ) =

—e~l e
Trc;cit g e

g (1+e ")

= g (v'
~

i ) (j ~

v')
V

—c~l c
Trc ct +e

g (1+e ")

For two-particle Greens functions, it is straightforward
to show, by expanding in eigenstates, that Wick's theorem
applies, i.e.,

(c;tc;,c;tc;, ) = (c;tc,, ) (c;",c;,)+ (c;tc;,) (c,tc, , ) . (3.20)

Note that this decoupling applies only to the "single-
bracket" average (trace over fermions) and not to the full
average, denoted by double angular brackets [Eq. (3.16)],
which involves the additional trace over spins. For aver-
ages involving fermion operators of both spins we can
simply factorize, since everything is diagonal in spins, for
example,

V 1+e
(n;,n, , ) =(n, , )(n, , ) . (3.21)

1
V1+BLBL 1 B1

(3.18)

Finally, we can obtain in a similar fashion time-dependent
correlation functions, by inserting the operators at dif-
ferent points in the product over time slices Eq. (3.8). For
example, a time-dependent Green's function is

( c;(l) )cj~(l2) ) =
T DLDL —1 Dl +1 'Dl Dl +1 jDl D1

TrDL D1

TrDi . D&DL Di, + &[(Di,Di, i Di, + &) 'c;Di, Di, +&]ci

TrDl . . . D1D
(3.22)

By expanding in eigenstates of Dl Dl 1 Dl +1, we find

(DiiDii —1 DI2+1) iDiiDii —i D12+1 g (BliBli —1 i +1)ik k ~

k

and replacing in (3.22)

TrDl . . D1DL . . Dl +1ckc
( c;(1,)ci (l2) ) = g (BiiBii i

' ' ' Bi,+ i)ik
k 12 1 l l2+ 1

and using (3.18), we finally obtain

(3.23)

(3.24)

& c'(ll )ci (l2) ) = Bi,B1,—I
' ' ' Bi,+1 + l2 1 L l2+1

(3.25)

Similarly,

(ci (li )ci(l2)) = 1
Bl +1 ~J1+Bi . Bl

2 2+

(3.26)

and for higher-order correlation functions Wick's theorem
applies. From these formulas we can obtain arbitrary
correlation functions of interest in the Hubbard model,
such as charge and spin correlation functions and suscep-
tibilities.

We have done a variety of checks on 'our simulation
program to make sure it was running properly. For the
noninteracting case our results should be exact for a finite

lattice, and we have verified this by comparing the results
from our simulation program with those obtained from a
direct calculation for lattices up to 8X8 in spatial size
and various temperatures. For the interacting case, we
have earlier reported comparison with exact results for
two sites, ' where we found that the choice E~U=0.5
gives reasonable accuracy (within a few percent). In Figs.
4 and 5 we show comparison of our simulation results for
the local moment [Eq. (4.1)] and the magnetic susceptibil-
ity [Eq. (4.2)] for 6-site rings with the exact results of Shi-
ba. It can be seen that the agreement is excellent. These
tests lead us to believe that the results to be presented in
the next section for the two-dimensional Hubbard model
are reliable.
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perature for U=2 and 4. Some results for U=8 were
given in Ref. 16. The q-dependent (zero-frequency) sus-
ceptibility is defined by

P
X(q)= —ge ' ' f dr([n;, (r) n—;,(r ]

&& [nj, (0) n—j,(0)]) (4.2)

and for q =0 it satisfies

X(q =0)=PS(q =0)

with S(q) the magnetic structure factor,

S(q)= —ge ' ' ((n;, —n;, )(nj, —1,
1 iq(R, —R. )

)

(4.3)

since the total magnetization commutes with the Hamil-
tonian. %e evaluated the susceptibility using both sides
of Eq. (4.3) and found agreement within statistical error.
The susceptibility increases smoothly as the temperature
is lowered, and there is a slight bulge (particularly or
U=4) for T between 1 and 2, which is where the oca
moment is increasing more rapidly. As T—+0, P diverges
logarithmically if U=O [Eq. (2.7)] because of the logarith-
mic singularity in the density of states, and we expect it to

go to zero for large U [Eq. (2.19)]. Although we do not
see this behavior up to the lowest temperature studied,
does increase less rapidly for U =4 than oor U=2 at low
temperatures. xcepExcept at the lowest temperatures, where
the singularity in p(e) plays a role, X is enhanced more the
larger U is, as one would expect. We also show in Fig. 7
the RPA results, Eq. (2.10). From comparison with the
Monte Carlo results, we conclude that RPA is fairly accu-
rate for U =2, but becomes rapidly inaccurate as U is in-
creased, and it always predicts too large an enhancement
of the susceptibility.

Figure 8 shows the staggered magnetic susceptibility
versus temperature. Here, for the free case we have the
combined effect of the singularity in the density of states

h t d F rmi surface yielding a low-temperature
behavior X„-ln (T/r). For large U, we expect X„—
at low temperatures, as discussed in ec.c. II. Our results
f f' t U ppear to follow the stronger divergenceor ini e a
P„—1/T. Similarly, as for the susceptibility,
overestimates the effect of the interaction, but it is quite
accurate orf U=2 in the temperature range studied.
However, RPA predicts a transition to an antiferromag-
netic state at T =0.33 and 0.75 for U =2 and 4, respec-
tively, and we find no evidence for it, as one would expect.

Figure 9 shows the internal energy versus temperature.
It is a smoothly varying function of temperature and in-
creases as isas U is increased. We have extrapolate t e

round-state energy assuming a T dependence at ow
temperature and using our Monte
lowest temperatures. The extrapolated results are
E= —1.17(2) for U=2, E= —0.88(3) for U=4, and
E = —0.48(5) for U =8. The errors are estimates on the
error due to the extrapolation, since the statistical error is
ver small. The extrapolated data are shown in the inset,
where they are compared with results from e athe Hartree-

nd obtainedFock approximation and an exact lower oun o

2

k gT/t

kBT/

FIG. 8. Same as Fig. 7 for the staggered magnetic suscepti-
bility.

FICi. 9. Energy versus temperature for U=2, 4, a=2 4 and 8. The
inset shows the extrapolated ground-state energy, compared
with Hartree-Fock predictions (solid line) and the I.anger-Mattis
lower bound (dashed line).
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by Langer and Mattis.
At finite temperature, the model considered here cannot

undergo a transition to a magnetically ordered state since
a continuous symmetry (rotation is spin space) would be
broken. At zero temperature, however, the existence of
long-range magnetic order is an open question. Although
our simulation method cannot deal with T =0 directly,
we can go to sufficiently low temperatures so that correla-
tions build up over the whole extent of our finite spatial
lattice. When the thermal correlation length is larger than
the spatial lattice size, the system behaves effectively as if
at zero temperature. We can see how the long-range order
builds up in the spin-spin correlation function. A picture
of the spin-spin correlations (cr,'rJ, ) in real space for an
intermediate coupling case (U=4) at low temperatures
(P=4) is shown in Fig. 10, on a 8&&8 lattice. Note that
there are definitely antiferromagnetic correlations extend-
ing over the whole lattice. For this low temperature, fluc-
tuations are predominantly quantum rather than thermal
(note that the local moment is essentially independent of
T for P& 1.5 in Fig. 5). The reduction in the spin-spin
correlation function from the perfect Neel state
((S,'Sj) =+1) is due to both charge fluctuations (since
U & Oc) and spin fluctuations (even for U~ac, the anti-
ferromagnetic Heisenberg model does not have perfect
long-range order). The magnitude of the on-site charge
fluctuation can be measured from

s(q)

lb) u=O

((n, +n, )z) —(n, +n, )', (4.5)

(4.6)

which implies that the electrons are quite delocalized, at
least on a short-range basis.

Figure 11 shows the Fourier transform of the spin-spin
correlation function

iq(R; —R, )S(q)= —ge ' ' ((n;, —n;, )(n, n,))—
L,J

(4.7)

0.5—

which is zero for U = ac, and 0.5 for U =0, and is related
to the local moment, Eq. (4.1). For the case shown in Fig.
10, it is 0.26. Another indication that the spins shown in
Fig. 10 are not "localized" but "itinerant" is given by the
average value of the kinetic energy of the electrons. For
the case of Fig. 10, we find

C C.( ciocjcr ) U=4

(ciocjo ) U=o

FIG. 11. (a) Magnetic structure factor for U =4, on an 8&8
lattice at P=4 (solid circles}, a 6X6 lattice at P=3 (open cir-
cles), and a 4&(4 lattice at P=2 (open triangles). Except where
shown, the results for different lattice sizes are identical. (b)
Same as (a) for U =0, for comparison.

for U=4 on an 8&&8 lattice with P=4 (solid line), for a
6X6 lattice, P=3 (short-dash line), and for a 4&&4 lattice,
P=2 (long-dash line). Note how the peak at q=(m. ,m)

grows as the lattice size increases and the temperature is
lowered. This indicates that the system is developing an-
tiferromagnetic order. The same correlation function for
U =0 is shown for comparison in Fig. 11(b). For T =0,
we will have for a sufficiently large lattice

S(rr, rr) =Nm +S,(rr, rr),

with m the staggered magnetization

1 R;m= —g( —1) '(n;„n;, ), —

(4.8)

(4.9)

FIG. 10. Spin-spin correlation function for U =4 on an 8)& 8
lattice, P= 4.

and S, the connected structure factor. To extrapolate the
long-range order, we plot S(rr, rr)/N versus 1!N, follow-
ing Oitmaa and Betts. ' According to (4.8), we expect
S(n.,rr)/N to follow a straight line if plotted versus 1/¹
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In one die dimension (1D, ' '
kn

HF
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e HF gap is

(4.12)
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pre actor sin'nce t e

2m/U (4.13)
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2D- Uw —v'tUe (4.14)
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I I

U=G
0 J I

CD

-0.5

at zero temperature, but it has not been checked directly.
In addition, at finite temperature this relation breaks
down, since the magnetization is destroyed by thermal
fluctuations while the gap for charge excitations remains.
We can see directly that the system develops a gap when
U is nonzero by studying the imaginary time decay of
various correlation functions. Figure 14 shows the
Fourier transform of the time-dependent Green's function

G(k, v)= —ge ' ' (c;(r)c;(0))]. &k(Z,.—~.i

0.5 l.o I.5

= (ck(r)ck(0)) (4.18)

To summarize, our numerical results suggest that the

magnetization for small coupling behaves as

m —v't /Ue '/v (4.17a)

and assuming the relation- 5 ~ Um between gap and mag-
netization holds, as in HF theory, we have for the gap in
two dimensions,

2ttv t/U— (4.17b)

that is, it differs from the HF gap [Eq. (4.11)] by the pre-
factor only. We cannot completely rule out other possibil-
ities; in particular, our numerical results are not incon-
sistent with the form b,2D-e '/ (with no U-dependent
prefactor). However, we believe that our numerical re-
sults together with the HF prediction and the analogy
with the one-dimensional case strongly suggest that (4.17)
is valid. Further numerical and analytic work should be
able to fully resolve this question.

It should be pointed out that the relation (4.17b) follows
from (4.17a) only if we make the reasonable assumption
that the gap and the magnetization scale in the same way

t,0

FIG. 15. Imaginary time dependence of current-current
correlation function for U =4, P= 3, 2, and 1 on a 6 X 6 lattice.

FIG. 14. Imaginary time dependence of Green's function for
k =(m/3, 2'/'3) 6X6 lattice, P=3. The dashed lines are the
predictions of a rigid two-band picture fitted to the initial time
decay.

at k =(m/3, 2m/3) on a 6X6 lattice. Since this k lies on
the Fermi surface for the noninteracting case, the Green's
function does not decay for U =0. When U is turned on,
G(k, ~) decays, indicating that the system develops a gap
for charge excitations. We have attempted to fit the time
decay to a simple exponential corrected for finite-
temperature effects:

G(kv) e '+e (4.19)

J(w) = (j„(r)j„(0)),
~ ~

J~ = —l ~ (X!—Xi )Ct CJ t~ttt

(4.20a)

(4.20b)

and x; the x component of the position vector at site i.
The time dependence does not change qualitatively when
the temperature is increased, and indicates that there is a
finite gap for conductivity at all temperatures. This will
give rise to a thermally-activated-type conductivity simi-
lar to a semiconductor at all temperatures. Our results
support the picture of Bari and Kaplan that the half-
filled Hubbard model does not undergo a transition to a
metallic state as the temperature is increased.

Finally, it is also interesting to study the occupation
number in k space, (ckck) =1—G(k), at low tempera-
tures. Figure 16 shows results for p=4 on an 8X8 lat-
tice. The temperature is sufficiently low that the results
are very close to the ground-state values. For U =0, the
occupation number is essentially 1 inside the Fermi sur-
face, 0.5 on the Fermi surface, and 0 outside. Note how
the interaction alters this behavior: for U=4, the occu-
pation number even at k =0 is somewhat smaller than 1.

and to the form predicted by HF theory for G(k, v) on a
finite lattice at finite temperatures. Both procedures give
essentially the same answer and are shown in Fig. 14 as
dashed lines, with b, chosen to fit the initial time decay of
G (k, r), b, =0.57 for U =2, and b, = 1.05 for U =4. The
exact results differ markedly from these mean-field results
for long times, indicating that a rigid two-band picture is
not adequate and that collective charge excitations with a
gap smaller than the one predicted by a rigid-band picture
exist.

Some mean-field calculations predict that the Hubbard
model should undergo a sharp insulator-metal transition
as the temperature is increased, leading to a metallic state
at high temperatures. We find no evidence for such a
transition. Figure 15 shows the imaginary time decay of
the current-current correlation function
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U=O

& f|k&
i(

I
z z

kx

FICx. 16. Occupation number in k space, nk = (ckck ) on an 8 && 8 lattice at Iii=4. Note how the interaction causes a rounding, and
even at k =0 the occupation number is less than unity due to the electron-electron interaction.

It is not possible to determine from such a small system
whether a well-defined Fermi surface still exists. It is be-
lieved, however, from general arguments, that the Fermi
surface is destroyed for U&0, since the system becomes
an insulator.

V. NON-HALF-FILLED BAND

We. have performed simulations for band fillings other
than one-half for U=4 and U=8. As.mentioned in Sec.
III, the determinant does become negative for some cases
if the band is not half-full, and it becomes necessary to
compute the average sign. This happens particularly for
large values of the interaction. Table I shows some results
for the average sign for various cases. It can be seen that
the average sign does become somewhat smaller as the
temperature decreases, and does not seem to be very
dependent on lattice size. As a function of band filling, it

TABLE I. Average value of the sign of the product of deter-
minants for some cases where the band is non-half-filled. For
the half-filled case, the sign is always positive.

first decreases and then increases again as the band filling
is further decreased. For the parameter range studied, the
average sign did not become small enough to cause prob-
lems in the simulations. It is not clear whether as P~ Qo

the average sign vanishes, and if so how. It certainly does
not appear to be vanishing exponentially, as in methods
where the fermions are not integrated out, but could pos-
sibly be vanishing algebraically.

Figure 17 shows the behavior of the spin-spin correla-
tion functions for U=4 and several band fillings, for
6X6 lattices at It3=4. 5. We also show the results for
4X4, p=3. Except for the case p= 1, there is essentially
no change in the spin-spin correlations in going to larger
lattices and decreasing the temperature. This suggests
that there is no magnetic order except for p = 1. The peak
value shifts from (lr, rr) as the filling is decreased. The re-
sults are very similar to the ones obtained with no correla-
tions except for the p= 1 case.

Figure 18 shows the case p=0.9 for 4X4 at It3=2;
6X6, p=3; and 8 X 8, p=4. The peak is still at (m, vr)

here, since we are close to the half-fiHed band, and there is
a small increment in going to larger lattices and increas-
ing P. There is a large difference, however, with the cor-

Band filling

0.9

0.84

0.65

0.48

0.67

Lattice size

4x 4

8x8
4x4
6x6
4x4
6x6
4x4
6x6
4x4
6x6

2
3
4

3
4.5
3
4.5
3
4.5
2
3

( Sign )

1

0.99
0.94
0.93
0.99
0.77
0.99
0.97
1

1

0.98
0.61

Band filling

1

0.91
0.81
0.67
0.60
0.42
0.25

0.899(3)
0.841(4)
0.750{2)
0.636(2)
0.565(2)
0.400(8)
0.247(6)

( ~z, i irz, i +s )

—0.31(4)
—0.21(3)
—0.12(4)
—0.089(2)
—0.079(S )
—0.036(7)
—0.017(2)

TABLE II. On-site and nearest-neighbor spin-spin correla-
tions for U =8, p=3 o'n a 4X4 lattice for various band fillings.
i 15 denotes a nearest neighbor of site i. The number in
parentheses is the statistical error in the last-figure.
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(a) (b)

s(q3
(c)

S(qj

FIG. 17. Magnetic structure factor for U =4 on a 6X6 lattice, p=4. 5 (solid lines) and a 4X4 lattice, p=3 (dashed lines) for
several band fillings. (a) p=1, (b) p=0. 84, (c) p=0.65, and (d) p=0.48.

P =0.9 responding half-filled case (Fig. 11), while Hartree-Fock
theory predicts the antiferromagnetic order for p=0.9 to
be still 75% of the value for p=1. Also, S(m, m) appears
to be saturating as N and P increase. In Fig. 19 we plot

0.2

S(7r,z)
N

P =0.9

t/64 l/36 I/N i/l6

FIG. 18. Magnetic structure factor for U =4, p=0.9 on an
8 X 8 lattice, p=4 (solid circles); a 6X 6 lattice, f3=3 {open cir-
cles); and a 4X4 lattice, p=2 (open triangles).

FIG. 19. Extrapolation of long-range antiferromagnetic order
for p=0.9, U =4. The results suggest that no long-range order
exists.
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p =0.67

U

FIG. 22. Triplet- and singlet-pairing susceptibilities at q =0
versus U for P=4, p-0. 65.

FIG. 20. Magnetic structure factor for V=8, p=0. 67 on a
6X6 lattice, p=3, and a 4X4 lattice, p=2. Note that there is
no indication of ferromagnetism, in contradiction with HF
theory.

S(rr, rr)/X versus 1/X for this case. Although not quite
unambiguous, the results suggest that the system does not
have antiferromagnetic order in the thermodynamic limit.

We now consider a case which according to mean-field
theory should have a ferromagnetic ground state: U =8,
p =0.65. The spin-spin correlations in real space show no
evidence of even short-ranged ferromagnetic correlations,
but rather weak antiferromagnetic correlations. The
structure factor is shown in Fig. 20. It has a broad peak
at (m., m.) but rather weak dependence on lattice size and
temperature, suggesting that there is no long-range order
here either. In fact, the q =0 structure factor decreases as
the temperature is lowered. We have also explored other
band fillings for U =8, and found nowhere even short-
ranged ferromagnetic correlations. Table II shows the
on-site and nearest-neighbor correlations for U =8 and
several band fillings. It can be seen that the nearest-
neighbor correlations are always antiferromagnetic,
becoming weaker as the band filling decreases. We con-
clude that the system shows no tendency for ferromagnet-
ic correlations in the parameter range studied.

Finally, we have also studied pairing correlations in our
simulation. We measured the singlet- and triplet-pairing
susceptibility, given by

0.5—

~ 0 ~
U=4

Xsp(q) =—g e ' ' dr(c;, (w)c;, (r)cj, (0)cj,(0)),
~ ~ 0

L,J

iq(R; —R. )
X (q)= —g e

l,j
X I dr(c;, (r)c, „-,(~)c..+„-,(0)c,„(0)) .

(5.2)

These susceptibilities peak at q =0, and diverge if the sys-
tem undergoes a transition to a singlet or triplet supercon-
ducting state. Figure 21 shows the temperature depen-
dence of X~p(q =0) and Esp(q =0) for U =0 and U =4,
and band filling p-0.65. Psp is strongly suppressed by U,
as one would expect. XIp for U =4 appears to grow in a
similar way as for the noninteracting case (Xyp at U =0
diverges logarithmically as T—+0), but it is smaller at all
temperatures. Figure 22 shows the dependence of the
triplet- and singlet-pairing susceptibilities on U for
p-0.65 at a fixed low temperature; both susceptibilities
are suppressed with U, although esp much more rapidly.
We find also that the suppression is larger for the band
closer to half-full. We have also measured the triplet-
pairing susceptibility for antiparallel spins, and obtained
results very close to Pyp.

Our results for g~p are surprising, since it has been ar-
gued that spin fluctuations should give rise to triplet pair-
ing in a model with strong short-ranged repulsive interac-
tions like the Hubbard model; in particular, it is believed
that in ' He the short-ranged repulsion is the dominant
mechanism causing superfluidity. Our findings cast
doubt on this picture, at least in two dimensions. For the
He case, we believe that the longer-range attractive tail in

the potential is crucial, and simulations on a Hubbard
model with nearest™neighbor attractive interactions are in
progress.

VI. THE ATTRACTIVE HUBBARD MODEL

FIG. 21. (a) Triplet- and (b) singlet-pairing susceptibility at
q =0 versus temperature for U =0 and U =4, p-0. 65.

We now discuss briefjy the properties of the attractive
Hubbard model in the half-filled-band case. W'e can do
this without extra work, since as is well known, a
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particle-hole transformation can map U & 0 into U &0.
The transformation is

d;, =c;,( —1)',
(6.1)

which takes U~ —U and 1eaves the kinetic energy invari-
ant. Under this transformation, S,-S, correlations are
mapped onto charge-density correlations:

U/t

8-

4-

paramagnetic
metal

C

CP

4P
C

E
L
CO

C-

paramagnetic
metal

n;, —n;, —+ri;, +n;» (6.2)

so that long-range antiferromagnetic order corresponds to
a charge-density-wave (CDW) state. We have also, how-
ever, long-range antiferromagnetic order in the other
directions of spin space; the spin operator in the x direc-
tion, for example, is

Sx ciicii+ci ascii di tdii +dildiy ~ (6.3)

and long-range order in the x component of the spin cor-
responds to long-range singlet superconducting order in
the attractive case. We conclude then that the ground
state of the two-dimensional attractive Hubbard model
(half-filled) is very peculiar in that it exhibits simultane-
ously CDW and superconducting long-range order. In the
presence of any small perturbation, for example, a
longer-range electron-electron interaction, one of the types
of order will probably be destroyed and the other further
stabilized. This is an interesting question to explore fur-
ther.

VII. CONCLUSIONS

We have studied properties of the two-dimensional
Hubbard model on a square lattice using Monte Carlo
simulations. As mentioned in Sec. II, we expect some of
the features found here to be very specific to the model
studied and others to be more general. The purpose of
this study was to provide answers to the following ques-
tions. (a) What are the properties of the simplest lattice
model of interacting electrons in two dimensions? (b)
How useful is the Hubbard model to describe electron
correlations and its consequences for narrow-band sys-
tems? And, (c) how well does mean-field theory describe
the model? We believe we have provided at least partial
answers to these questions. Finally, another purpose of
our work was to demonstrate that numerical simulations
can be a useful tool to study interacting electron systems
in more than one dimension.

Our conclusions mn be summarized by the phase dia-
gram in Fig. 23. We have shown that for the half-filled
band mse the system exhibits antiferromagnetic long-
range order for all values of the interactions. This con-
clusion is by no means obvious: In the U = ~ limit, spin
fluctuations reduce the long-range order to 50% of its
classical value, as shown by Betts and Oitmaa; one might
have expected that for any U & oo, charge fluctuations
destroy the order altogether, or that a critical value U, ex-
ists below which no long-range order exists. Even though
the susceptibility diverges for U =0, this does not prove
that long-range order exists for any U &0; remll the case
of one-dimensional spinless fermions with a nearest-

FIG. 23. Conjectured ground-state phase diagram for the
two-dimensional Hubbard model. '

neighbor repulsion V, where, even though the V=O sus-
ceptibility is divergent, long-range order starts building up
only for V & 2t Our .numerical results indicate that long-
range order exists for any value of U &0, although sub-
stantially reduced from the mean-field-theory predictions.
We have also studied the character of the transition at
zero coupling using finite-size scaling, and concluded that
the mean-field-theory predictions are essentially correct
except for a prefactor, as occurs in one dimension.

For the non-half-filled band, although we have only ex-
plored a few points on the phase diagram, we believe our
results strongly suggest that no long-range magnetic order
exists. We have also found no indication of even short-
ranged ferromagnetic correlations. Concerning this last
point, our findings are in agreement with those of other
authors, ' who suggested that bipartite lattices are partic-
ularly unfavorable for ferromagnetic correlations.

Unfortunately, our phase diagram, Fig. 23, is much less
interesting than the Hartree-Fock phase diagram, Fig. 3.
It appears that an approximate (and qualitatively wrong)
solution to a simple model does much better in describing
features of real materials than the exact solution of the
model. In fact, our model does not really describe
itinerant magnetism: only for the insulating case do we
find magnetic long-range order. Although this could be
due to dimensionality (work on the three-dimensional
Hubbard model is in progress), it is possible that a model
to describe itinerant magnetism will have to necessarily
include band degeneracy.

We have also explored pairing correlations and, in par-
ticular, triplet pairing. Recently, it has been suggested
that triplet superconductivity could occur in strongly in-
teracting fermion systems, driven by an electronic interac-
tion mechanism. Our results suggest that this is unlike-
ly in a single-band model; it could, however, conceivably
occur in models with more than one band.

Several questions about the two-dimensional Hubbard
model remain open. The consequences of the singularity
in the density of states coinciding with the nesting of the
Fermi surface should be investigated theoretimlly beyond
the RPA: a renormalization-group treatment appears
possible. For strong coupling, the formulation we have
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used breaks down because of the finite time step b,r. In
that regime, it should be more useful to construct first an
effective Hamiltonian, valid to some order in t/U, to be
studied directly by numerical simulations. Questions such
as the range of validity of Nagaoka's theorem could then
be addressed. Finally, changing the band structure by in-
troducing, for example, a next-nearest-neighbor hopping
term should lead to new and interesting physics. In par-
ticular, it will produce the singularity in the density of
states to occur at an energy where nesting does not occur.
This could possibly lead to ferromagnetism if the Fermi
energy coincides with the singularity in the density of
states. It could also lead to superconductivity if an effec-
tive attractive interaction between the electrons exists
caused by coupling to boson degrees of freedom. In addi-
tion, since nesting will not occur in the half-filled case, it
could lead to a Mott metal-insulator transition for a finite
value of the interaction.

~=X lv» &c I
(A5)

and define new fermion coordinates

~X&J ~» J'
J

with inverse

c, = g &j
~
p)c~,

(A6a)

(A6b)

%e can write the exponential of B, using the properties
of fermion operators, as
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APPENDIX

We discuss here an elementary derivation of Eq. (3.9).
It follows from the identity:

Tre ' " 'e ' " '=det(1+e e ),
where 3 and B are arbitrary matrices, and the summation
over indices is understood. To prove (Al), we first prove
the identity:

e
—c; Ag~c~

—c; B(jcj — ~cJ„c„e =e (A2)
—I„where A,,=e " are the eigenvalues of the matrix e "e

From (A2), Eq. (A 1) follows immediately, since

—~ c+1c —c+I c

= + (1+e ")

=det(1+e "e-B) . (A3)

To prove (A2), we show that an arbitrary many-particle
state propagates in the same way using the expression on
either side. Consider first a single-particle state

l~&= X,'Io& (A4)
J

with aj arbitrary numbers, and
~
0) the vacuum state.

Let
I p ) be the basis where the matrix B is diagonal, i.e.,

"""=g [I+(e "—1)cycle] . (A7)
P

On applying this to the state (A4), expanding cz in terms
of c„, and using fermion anticommutation relations, we
find

—c ~8"c.' " ' ~P)= ga,'c, ~0),
J

QI- = e g~aJ.

J

(Ag)

e ' " 'e ' " '=(e "e ) c„~o)=e "c„~o),
which is the same of course as we obtain from the right-
hand side of Eq. (A2), using the relation (3.16). Thus, we
have proved Eq. (A2) when applied to single-particle
states, and it only remains to be shown that if we have
more than one particle they propagate independently.
Consider first the propagation by one factor. If we take a
two-particle state

~ p ) =c~t,c~t, I
O) (A 10)

and propagate it with B, we have

Similarly, in operating with both factors on the left-hand
side of Eq. (A2), one finds after some algebra

""'
~
y) = ga "c'~O)

J
(A9)

a
J

i.e., the amplitude of the propagated state is obtained by
multiplying the original amplitude by the product of the
matrices. Equation (A9) is valid in any basis, in particu-
lar in the one where e e is diagonal. If we start then
with a state that is an eigenstate of e e

/ @)=c"„/0), '

then
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'1 1
~
P) = + [1+(e "—1)c&c&]c&,c& ~

0)

(A 1 1)

Equation (All) clearly holds if p]+@2 since we pair p&
and pz with its corresponding factor, and also if p, &

——p2,

since then both sides are zero due to the Pauli principle.
Clearly then, the propagation of an arbitrary two-particle
state is 'a superposition of the propagation of each particle
independently, and similarly for many-particle states. By
using the argument repeatedly, it follows also for propa-
gation through more than one factor, which completes the
proof of Eq. (A 1). Of course, this is then trivially extend-
ed to more than two factors.
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