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Electron correlations in narrow energy bands 

By J. HUBBARD 

Theoretical Physics Division, A.E.RJE., Harwell, Didcot, Berks 

(Communicated by B. H. Flowers, F.R.S.-Received 23 April 1963) 

It is pointed out that one of the main effects of correlation phenomena in d- and f-bands is 
to give rise to behaviour characteristic of the atomic or Heitler-London model. To in- 
vestigate this situation a simple, approximate model for the interaction of electrons in 
narrow energy bands is introduced. The results of applying the Hartree-Fock approximation 
to this model are examined. Using a Green function technique an approximate solution of 
the correlation problem for this model is obtained. This solution has the property of reducing 
to the exact atomic solution in the appropriate limit and to the ordinary uncorrelated band 
picture in the opposite limit. The condition for ferromagnetism of this solution is discussed. 
To clarify the physical meaning of the solution a two-electron example is examined. 

1. INTRODUCTION 

In recent years much attention has been given to the theory of correlation effects 
in the free electron gas (Bohm & Pines I953; Gell-Mann & Brueckner I957; Sawada, 
Brueckner, Fukuda & Brout I957; Hubbard 1957, I958; Pines & Nozieres 1958). 
Apart from the intrinsic interest of this problem, the free electron gas serves as 
a model for the conduction bands of metals and alloys. Transition and rare-earth 
metals have in addition to their conduction bands partly filled d- or f-bands which 
give rise to the characteristic properties of these metals. Correlation phenomena 
are of great importance in determining the properties of these narrow energy bands, 
indeed more important than the corresponding effects in conduction bands. Un- 
fortunately, however, the free-electron gas does not provide a good model for these 
bands. Rather, one requires a theory of correlations which takes into account 
adequately the atomistic nature of the solid. Indeed, in the case of the f-electrons 
of rare earth metals it is probable that for most purposes a purely atomic (sometimes 
referred to as a Heitler-London or localized) model will prove satisfactory. The 
same cannot be said, however, of the d-electrons of transition metals. It is with one 
approach to a theory of correlation effects in the d-bands of transition metals that 
this paper is concerned. 

A theory of correlation effects in narrow energy bands is inevitably of a somewhat 
different nature from a theory of correlation effects in the free electron gas. The 
electron charge density in a d-band is concentrated near the nuclei of the solid and 
sparse between the atoms, making it possible to speak with some meaning of an 
electron being 'on' a particular atom. This circumstance gives rise to the possibility 
of an atomic description of the d-band despite its considerable bandwidth. It is, 
in fact, found experimentally that the d-electrons of transition metals exhibit 
behaviour characteristic of both the ordinary band model and the atomic model. 
For example, the occurrence of spin-wave phenomena in ferromagnetic metals 
and the strong temperature dependence of the susceptibilities of some transition 
metals represent properties which can be understood on the basis of an atomic 
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Electron correlations in narrow energy bands 239 

model, while the large d-electron contribution to the low temperature specific heat 
and the occurrence in ferromagnets of magnetic moments per atom which are far 
from integral numbers of Bohr magnetons are properties which are easily explained 
by band theory. As will be tried to make plausible below, it is correlation effects 
in narrow bands which lead to the atomic behaviour and it is only by taking correla- 
tion effects into account that one can understand how d-electrons exhibit both 
kinds of behaviour simultaneously. Thus a theory of correlations in d-bands will 
be mainly concerned with understanding this situation in greater detail and 
determining the balance between bandlike and atomic-like behaviour. 

In its most naive form the atomic theory would picture a transition metal as a 
collection of (say singly charged) ions immersed in the conduction electron gas and 
interacting with each other in much the same way as the corresponding ions in 
salts. If, as is generally supposed, the number of d-electrons per atom is non- 
integral this simple picture is untenable. However, it is possible to substitute for it 
a less restrictive model which nevertheless guarantees most of the characteristic 
properties of the atomic model. It is sufficient to assert that, despite the band 
motion of the d-electrons, the electrons on any atom are strongly correlated with 
each other but only weakly with electrons on other atoms; such intra-atomic 
correlations are inevitably of such a type as to make the metal behave to some extent 
according to the predictions of the atomic model. 

It may be that this situation can be made clear by considering one or two ex- 
amples. Consider first a partly filled d-band of non-interacting electrons. In such 
a system the spin of an atom (that is the total spin of all the electrons on that atom) 
is a quantity which fluctuates randomly in magnitude and direction, the character- 
istic time of fluctuation being of the order of the d-electron hopping time, i.e. the 
time ( - h/A, AX = d-electron bandwidth) in which a d-electron hops from one atom 
to another in performing its band motion. In this situation it is reasonable to think 
of the spin being associated with each of the moving d-electrons. 

Let us now inquire what effect one might expect the electron interaction will 
have in this situation. As a guide one may note that Hund's first rule for atoms in- 
dicates that the intra-atomic interactions are of such a nature as to aline the 
electron spins on an atom, so one may expect a similar effect in a metal. Suppose 
now that the electrons have their spins quantized in what will be called the up and 
down directions and that at some instant a given atom has its total spin in the up 
direction. Then the intra-atomic interactions are, according to Hund's rule, of such 
a nature that this atom tends to attract electrons with spin up and repel those with 
spin down. In this way the property of an atom on having total spin at some instant 
tends to be self-perpetuating. If these intra-atomic forces are strong enough to 
produce appreciable correlations, then it follows that the state of total spin up 
on an atom may persist for a period long compared with the d-electron hopping 
time. This persistence of the atomic spin state is not due to the same up-spin 
electrons being localized on the atom. The actual electrons on the atom are always 
changing as a result of their band motion, but the electron motions are correlated 
in such a way as to keep a preponderance of up-spin electrons on the atom. In these 
circumstances (i.e. if the correlations are strong enough) one can think of the spin 
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240 J. Hubbard 

as being associated with the atom rather than with the electrons and the possibility 
of an atomic or Heisenberg model emerges. 

This example illustrates the possibilities of the situation. Although one may still 
suppose the electrons to move rapidly from atom to atom as assumed in the band 
model, their motion may be correlated in such a manner as to give properties 
characteristic of the atomic theory. In this way one may understand how the 
electrons can exhibit both types of behaviour simultaneously. The degree of atomic 
behaviour exhibited depends upon the strength of the correlations. 

A second example which has been studied by various authors (Slater I937; 
Herring 1952; Thompson 1960; Edwards i962; Kubo, Izuyama & Kim i962) is 

the theory of spin-waves in the band model of ferromagnetic metals. These authors 
show that the spin-wave can be regarded as a collective motion which appears 
when the electron interactions are taken into account. More precisely, the spin- 
wave appears as a bound state of an electron of one spin with a hole of opposite 
spin, the relative motion of the electron and hole being such that they spend most 
of their time on the same atom. Now, an electron of one spin and a hole of opposite 
spin on the same atom look just like a reversed spin on that atom, the motion of the 
bound electron-hole pair resembling a motion of the reversed spin from atom to 
atom, which is just the Heisenberg model picture of a spin-wave. Thus again the 
atomic picture emerges as a consequence of correlation effects, this time the corre- 
lation between an electron and a hole. 

Yet another important example concerns the fluctuation in the number of elec- 
trons on a given atom. It is, of course, one of the more obvious features of the 
atomic model that it assumes that there are the same number of electrons on each 
atom. But one can show that for uncorrelated electrons belonging to a band con- 
taining v states per atom that the probability of finding n electrons on a given atom 
is given by the binomial distribution 

v! 3s n 3 v\-n 

n! (v-n)! V vJ 

wheres is the mean number of electrons per atom. Thus n fluctuates about its mean 
value s, the root-mean-square fluctuation being V{s(l - 8/v)} and the frequency of 
fluctuation of the order of an electron hopping time. Now one general effect of 
electrostatic interactions is a tendency to even out the electron charge distribution, 
opposing the build-up of an excess of charge in one place and a deficiency in another. 
Thus the correlations produced by the interaction will be of such a nature as to 
reduce the fluctuation in the electron number on each atom. It is this type of corre- 
lation which is most important in the hypothetical case of a collection of atoms 
arranged on a lattice but widely separated from each other. Formally ordinary 
band theory is applicable to such a situation, but the correlation effects of the type 
discussed above are dominant and make the system behave like a set of isolated 
neutral atoms, which is clearly the correct description physically. 

It is clear from the above discussion that an important requirement of a theory of 
correlations in narrow energy bands is that it have the property of reducing to the 
atomic solution in the appropriate limit, i.e. when applied to a hypothetical system 
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Electron correlations in narrow energy bands 241 

of atoms on a lattice but widely separated from each other and interacting only 
weakly. It is one of the purposes of this paper to describe a very simple, approxi- 
mate theory having this property. Although one has always in mind the case of 
d-electrons, the theory to be described is concerned with the case of an s-band 
having two states per atom (up and down spin states). The advantage of this par- 
ticular case is its comparative mathematical simplicity. One may expect that some 
important aspects of the real (d-electron) case will be missed in a study of the s-band 
case but may nevertheless hope to obtain some results of general application. 

It might seem that in view of the fact that no adequate theory of correlations in 
free electron gases at metallic densities exists at the present time that it is over- 
ambitious to attempt a study of the formally more difficult case of band electrons. 
However, it turns out that in the case of narrow energy bands one can take account 
of the atomicity of the electron distribution to introduce a very simple approximate 
representation of the electron interactions. This approximate interaction is, in 
fact, mathematically much simpler to handle than the Coulomb interaction itself. 
This possibility has been well known for many years and has been applied to the 
spin-wave problem by the authors mentioned in that connexion above, but does 
not seem to have been exploited hitherto in connexion with the general correlation 
problem. In ? 2 this approximate interaction and the adequacy of the approxima- 
tion involved is discussed. 

For the sake of comparison with the results of the theory of correlations developed 
later, in ? 3 the application of the Hartree-Fock approximation to the simplified 
interaction is considered and in particular the condition for ferromagnetism 
predicted by Hartree-Fock theory is examined. 

In ?? 5 and 6 the approximate correlation theory for an s-band mentioned above 
is developed. To this end a Green function technique of the type described by 
Zubarev (i960) is used; to establish the notation the basic definitions and equations 
of this technique are briefly reviewed in ? 4. In ? 5 it is shown how, using this tech- 
nique, an exact solution can be obtained in the atomic (zero bandwidth) limit. In 
? 6 the same method is applied to the general (finite bandwidth) case to obtain the 
approximate solution. In ? 7 the nature and some of the properties of this solution 
are discussed. 

In ? 8 we examine a 2-electron problem which has been studied previously in a 
related context (Slater, Statz & Koster I 953) and which throws some light upon the 
physical interpretation of the solution obtained in the preceding sections. 

Finally in ? 9 the condition for ferromagnetism predicted by the new calculation 
is discussed. It is found to be considerably more restrictive than the corresponding 
criterion derived from Hartree-Fock theory, and, in fact, can only be satisfied in 
rather special circumstances. 

2. AN APPROXIMATE REPRESENTATION OF ELECTRON INTERACTIONS 

In this section the approximate model of electron interactions in narrow energy 
bands used in later calculations is described. As pointed out in the introduction, 
for reasons of mathematical simplicity the case of an s-band will be considered. 
However, when discussing below the validity of the various approximations which 
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242 J. Hubbard 

have gone into the derivation of the model we shall assume we are dealing with 
3d-transition metal electrons since this is the case of real interest. 

Consider a hypothetical partly-filled narrow s-band containing n electrons per 
atom. The Bloch functions of the band will be denoted by fk and the corresponding 
energy by ek where k is the wave vector. These wave functions and energies are 
assumed to have been calculated in some appropriate Hartree-Fock potential 
representing the average interaction of the s-band electrons with the electrons of 
other bands and the n electrons per atom of the s-band itself. This Hartree-Fock 
potential will be assumed to be spin independent so one has the same energies and 
wave-functions for both spins. 

Now let Ck,, ck+, be the destruction and creation operators for electrons in the 
Bloch state (k, o), where o- = + 1 is the spin label. Then the dynamics of the elec- 
trons of the band may be described approximately by the Hamiltonian 

H = EekCko' Cko 
kco 

+ 1 l; l; (k, k2 i/r |kik2)ck t0ck202 k2ck;0 
klk2k k', 0I1t02 

- 1{2 (kk'[ 1 /r I kk' )-(kk'i 1 /r I k'k)} vk cck0, (1) 
kk' kr 

where the k sums run over the first Brillouin zone (all sums over momenta in this 
paper are to be understood in this way) and where 

(k, k2 Ir Ir k'k) =_ e2 ___(X) 3fki(X) y42(x') _fk'X (dxdx (2) ( k ~ k jl rj ' k ' 2 _ _ _ _ _ _ 

The first term of H represents the ordinary band energies of the electrons, the 
second their interaction energy. The last term subtracts the potential energy of the 
electrons in that part of the Hartree-Fock field arising from the electrons of the 
s-band itself. This term has to be subtracted off to avoid counting the interactions 
of the electrons of the band twice, once explicitly in the Hamiltonian and also 
implicitly through the Hartree-Fock field determining the ek. The Vk are the assumed 
occupation numbers of the states of the band in the Hartree-Fock calculation; it 
has been assumed that up and down spin states are occupied equally. 

It is convenient to transform the Hamiltonian of (1) by introducing the Wannier 
functions 

04(x) = NX W E 3k(x), (3) 
k 

where N is the number of atoms. One can then write 

V/ k(x) - N- E eikeRi (x- Ri)(4) 
i 

where the sum runs over all the atomic positions Ri. Introducing the creation and 
destruction operators ct, and ci, for an electron of spin o- in the orbital state 0 (x -Rj, 
one can also write 

Ck0 - N-- eikRi ck, 40 = NAge-kRtCt (5) 
i i 
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Electron correlations in narrow energy bands 243 

These results can now be used to rewrite the Hamiltonian of (1) as 

Ti _il clafjozry + I (ij | Ir I k1) ctiajz ctar Ca'Ck 
i, j a ijkl co-' 

- E {2(ij I 1/rj ki) - (ijj 1/r ljl)} vjtot (6) 
ijkl r 

where Tij = N-1Eeeeik4(Ri-Rj), (7) 
k 

(ijj1!rIjd)=e2f 0(X RR)0(x-Rk)0 *(x' - RI) ,0(x' -R)d d, (S) 

and P= N-1 E k eik.(Rj-Rl). 
k 

It is now possible to make the essential simplifying approximation. Since one is 
dealing with a narrow energy band the Wannier functions 0 will closely resemble 
atomic s-functions. Furthermore, if the bandwidth is to be small these s-functions 
must form an atomic shell which has a radius small compared with the inter-atomic 
spacing. From (8) it may be seen that in this circumstance the integral (ii 1 /r Iii) = I 
will be much greater in magnitude than any of the other integrals (8), suggesting 
that a possible approximation is to neglect all the integrals (8) apart from I. If 
this approximation, the validity of which is discussed in greater detail below, is 
made, then the Hamiltonian of (6) becomes 

H-z Tijct cj + 2I I ni..n,-I E viini., (10) 

where ni, = ct ci. From (9), vii = N1 = so the last term of (10) reduces 
k 

to - 'In E i.- -INn2 =constant and may be dropped. Equation (10) gives 
i, 0- 

the approximate Hamiltonian used in the later sections of this paper. 
Obviously many approximations, explicit and implicit, have gone into the 

derivation of the simplified Hamiltonian of (10). We will next try to assess the 
validity of these approximations when applied to the case of transition metal 
3d-electrons. 

The most obvious approximation has been the neglect of all the interaction terms 
in (6) other than the (ii 1 /r I ii) term. For the sake of comparison one may note that 
I has the order of magnitude 20 eV for 3d-electrons in transition metals. The largest 
of the neglected terms are those of the type (iji I/r Iij) where i and j are nearest 
neighbours. From (9) these integrals can be estimated to have the order of magnitude 
(2/R) Ry - 6 eV (R = interatomic spacing in Bohr units). Actually this figure 
should be reduced appreciably to allow for the screening of the interactions of 
electrons on different atoms by the conduction electron gas. This screening effect 
may be allowed for approximately by multiplying the above estimate by a factor 
e-KR where K is an appropriate screening constant. In the case of 3d transition 
metals e-KR , - 2, reducing the (ijj 1/r Iij) term to the order of magnitude 2 to 
3 eV. For the case in which i and j are now nearest neighbours 

(ijj l/r lij) 
2 -1R Rj1 Ry 
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244 J. Hubbard 

which falls off rapidly with increasing jRj-Rjj on account of the exponential 
factor. Thus the term 1 E E (ijI ij)nin., (11) 

i,j T,7 

in (6) is quite appreciable, but can, perhaps be neglected compared to I as a first 
approximation. 

The next biggest terms neglected are those of the types: 

(ii| 11r lij) q Ry , eV, 
(iji 1/r lik) -q Ry -LeV, 
(iij 1/r Iii) - (ijj 1/r Iji) _ q2 Ry '--LeV, 

where i, j and k are all nearest neighbours and q 2 is the overlap charge (in units 
of e) between two 3d-electrons on nearest neighbour atoms. All the other inter- 
action terms in (6) which have been neglected are smaller still than these which 
one sees are already small compared to those of (11). 

A different type of approximation that has been made is to assume that only the 
interactions of importance are those between the 3d-electrons (actually between the 
electrons of the s-band in the equations above), the interactions with electrons of 
other bands being represented only through the Hartree-Fock field. One question 
concerning this point is raised at once by the fact that in estimating the order of 
magnitude of the terms of (11) allowance was made for the screening effect of the 
conduction electron gas on the interactions. It might therefore be inquired whether 
there is not a similar screening effect reducing the magnitude of I. There is, in fact, 
such an effect. Because the speed at which d-electrons move from atom to atom is 
slow compared with the velocity of a typical conduction electron the latter can 
correlate efficiently with the d-electrons and screen their fields. Thus, if a given atom 
has an extra d-electron its negative charge will repel conduction electrons producing 
a correlation hole about that atom in the conduction electron gas. The presence of 
this correlation hole reduces the electrostatic potential at the atom (and therefore 
at each of its d-electrons) by about 5 V, which is equivalent to reducing I by 5 eV. 
This reduction is appreciable but does not change the order of magnitude of 1. 

It might also be thought that I will be reduced by the screening of the interactions 
of the d-electrons by the core electrons and by the d-electrons themselves. This is 
not expected to be a big effect, however, because the kinetic energies of the orbital 
motion of the d-electrons are large compared to I. In fact, one may estimate the 
reduction in I due to this effect by noticing that a similar effect will occur in free 
atoms. In the case of free atoms it has been found that these effects make the 
F2(3d, 3d) and F4(3d, 3d) parameters (using the notation of Condon & Shortley 
I935) determined from experiment about 10 to 20 0 smaller than those calculated 
from Hartree-Fock wave functions (see Watson i960) so one may expect a reduction 
in I of a similar order of magnitude. 

It would seem from the above discussion, although it may be more realistic to 
use in the Hamiltonian of (10) an 'effective' I ( 10 eV) rather than that given by 
the integral (8), the approximations involved in (10) are otherwise not so poor as 
to make it an unreasonable starting-point for a theory of correlations when suitably 
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Electron correlations in narrow energy bands 245 

generalized from the s-band to the d-band case. It may, perhaps, be hoped that the 
terms omitted in going from (6) to (10) may be treated as perturbations on solutions 
obtained from (10). 

3. THE HARTREE-FOCK APPROXIMATION 

For the sake of comparison with the results of the correlation theory developed 
in later sections it is convenient now to investigate the results obtained by applying 
the Hartree-Fock approximation to the Hamiltonian of (10). Actually, we shall 
not make an exhaustive study of all possible Hartree-Fock solutions, but will 
restrict attention to a particularly simple class of solutions which may represent 
non-magnetic or ferromagnetic states but not more complicated spin arrangements. 
A similar restriction applies also to the correlated solutions investigated in later 
sections. 

As is well known, one may obtain the effective Hartree-Fock Hamiltonian by 
'linearizing' the interaction terms in the true Hamiltonian. In the case of the 
Harniltonian of (10) this amounts to simply replacing the term n, ni, -, by 
ni, <ni, ,> + ni, , <ni,> where <ni,> is the average of the expectation of ni, over 
a canonical ensemble at some temperature ?. Dropping the last term of (10) which 
has been shown to be a constant, the Hartree-Fock Hamiltonian is found to be 

Hof,1 Tij ct, cj, + I Eni.- <ni,_> (12) 

Attention will now be restricted to the class of solutions for which 

<ni,> = n0b for all i. (13) 
Then (12) becomes 

Hhf = E Tj cT cj + I E n-. cita (14) 
i, jOi 

or, transforming back to the operators 4o, Cka 

Hid = , I {Ck?+ In-fal CktoCk (15) 
k o 

which is simply the Hamiltonian for a collection of non-interacting electrons with 
a slightly modified band structure, the energy of the (k, o) state now being ek + In_, 
It follows at once that if P(E) is the density of states per atom corresponding to 
the band structure 6k, then the densities of states p,(E), where o- = + 1, for the 
electrons described by the Hamiltonian of (15) are 

p,(E) = P(E -In-,) = P(E-In + In,), (16) 

where the last step follows from 
n t + nJ, = n. (17) 

If , is the chemical potential of the electrons, then at the absolute zero of tem- 
perature one will have 

n,= f p,,(E)dE = f P(E-In+In,)dE. (18) 
_00 _00 

The pair of equations (18) must now be solved together with (17) for nt, n l and ,t. 

i6 Vol. 276. A. 
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246 J. Hubbard 

One possible solution of (18) is that for which 

nt = ny= In, (19) 

which represents a non-magnetic state of the system: It is determined by 
It 

Tn6=r P(E-'In) dE. (20) 

If I is sufficiently large it may also be possible to find ferromagnetic solutions 
for which n f + n . In this case equation (18) must have two distinct solutions which 
are such that they can satisfy (17). The condition that ferromagnetism is just 
possible can now easily be seen to be the condition that (19) and (20) give a double 
solution of (18). But this condition can at once be found from (18) to be 

1-IP(It--In). (21) 

Thus, if for any E the condition IP(E) > 1 is satisfied, then for some n and We 
determined by (20) and (21) Hartree-Fock theory predicts that the system will 
become ferromagnetic. It will be found that when correlation effects are taken into 
account one obtains a somewhat more restrictive condition for ferromagnetism. 

4. A GREEN FUNCTION TECHNIQUE 

In the next two sections an approximate solution of the correlation problem for 
the Hamiltonian of (10) is derived. The method of calculation is based upon the 
Green function technique described by Zubarev (i960). In order to establish the 
notation, the principal definitions and basic equations of this technique are briefly 
reviewed in this section. 

Let X be any operator. Then define 

<XZ> _ Z-1 tr {X Z-lf-zY} = tr {e-,8(1'I1-zv)J, (22) 

where H is the Hamiltonian and N the total number operators fi = 1/K@, K= Boltz- 
mann's constant, E = absolute temperature and jt = chemical potential of the 
electrons. 

Now let A(t) = eiHtA(0) e-i~t (in units in which Ai = 1) and B(t') be two operators. 
Then retarded (+) and advanced (-) Green functions may be defined by 

<<A (t); B(t')>>(?) = +i0 ? (t-t')} <[A (t), B(t')]v>, (23) 

where [A, B]7 = AB - yBA, y = ? 1 (whichever is the more convenient), and 0(x) 
is the step function 0(x) = 1 if x > 0, 0 0 otherwise. These Green functions can be 
shown to satisfy the equation of motion 

d 
it <<A (t); B(t')?>(?) = (t -t') <[A (t), B(t)],7> + <<[A (t), H]; B(t')>>(?). (24) 

Since <<A(t); B(t')>>(?) are functions of t - t' only, one can define for real E the 
Fourier transforms 

<<A; B>>?) = 2 f <<A(t); B(0)>>(?)eiEl dt. (25) 
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Electron correlations in narrow energy bands 247 

In the case of the retarded (+) function the integral (25) converges also for 
complex E provided SE > 0, so <<A; B>>?+) can be defined and is a regular function 
of E in the upper half of the complex E-plane. Similarly, <<A; B>>(-) is a regular 
function in the lower half of the complex E-plane. One may now define 

<<A; B>>E =<<A; B>?%F) if JE > o, 

<<A; B>>j-) if JE < 0, (26) 

which will be a function regular throughout the whole complex E-plane except on 
the real axis. From (24) it can be shown that <<A; B>>E satisfies 

E <<A; B>>E =1!2r <[A, B],> + (<[A, H]; B>>E (27) 

It can be shown (Zubarev i960) that 
or e-~~~~~~~~~~~~~iE(t-t') 

<B(t') A(t)> = i lim J [<(A; B>>E+i - <<A; B>>E-ij - dE. (28) 

Equations (27) and (28) together with the method of approximation described by 
Zubarev (i960) form the essential basis of calculations with these Green functions. 

5. THE EXACT SOLUTION IN THE ATOMIC LIMIT 

In this section the application of the technique described in the preceding section 
to the Hamiltonian (10) in the limiting case of zero bandwidth is discussed. This 
limit corresponds to the situation in which the wave functions on different atoms 
have only a negligible overlap, in which case one knows that the atomic theory gives 
the exact solution. It will be shown that in this case the Green function technique 
also leads to an exact solution. Of course, for the Hamiltonian (10) the results of 
these calculations are rather trivial, but they do serve to reveal the essential trick 
required to make more elaborate theories go over into the exact atomic solution 
in the appropriate limit. 

All effort will be concentrated on obtaining an expression for the Green's function. 

GCk(E) = <<cjic; Ct?E (y - 1), (29) 

since, as is well known, a knowledge of this Green function enables one to calculate 
pseudo-particle energies, the Fermi energy, free energy, etc. For example, sub- 
stituting (29) into (28), putting j = k, t-t' = 0 and summing on j, one obtains for 
the mean number n0. of electrons per atom of spin oa the expression 

=Nlim J[Gj~j(E d-i) - Gj'j(E - i)],/7- 1 (30 

from which one may infer that 

p,(E)= lm E [G~j (E + e) - G'(E - c)] (31) 
Du 6-o + i 

i 

gives the density of (pseudo-particle) states per atom of spin o. 
Define T = N-1 ek; (32) 

k 
i6-2 
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248 J. Hubbard 

T0 is the mean band energy. In the limit of zero bandwidth 6k = To for all k, whence 
it follows that 7il = To0 ij and the Hamiltonian (10) becomes 

H =oEni+-2- Enini, (33) 
i, io 

from which it follows that 
[ciC,H] = Trci+?Icin -ni, (34) 

so equation (27) gives 

EW-j(E) = 8ij + To Gly(E) + 117Tj (E), (35) 

where rFj(E) = <<ni c* Cjcr?E ( =1). (36) 

Now, [ni,_ ciC, c (] 8ijni, ; also from (33) [niC,H] = 0, so (27) gives for 
rFT(E) the equation 

E?,J( = 8ii <ni,-,Y> +To ro + I<<n2;-,ci,; ctc>>E. (37) 2JTT 
o-i17T\ 

At this point one may notice that since n4 = ni, the last term of (37) is just I171, 
so (37) can be solved at once to give 

-(. <nli, -r> (8 
27T 2i - ToE0-I (38) 

The usual infinite sequence of equations of the type (27) involving higher and 
higher order Green functions has been avoided here by the simple observation 
that the last term of (37) can be expressed in terms of rFJ. It is this possibility that 
enables one to obtain an exact solution in the present case and solutions reducing 
to the correct solution in the zero bandwidth limit in the general case discussed in 
the next section. 

It follows from the definition (22) and the symmetry of the problem that <nat> 
is independent of i and o, so one has at once <nt> = ln. Using this result and 
substituting (38) into (35) one obtains 

j(E) = 27 (E-To E-T0-} (39) 

which gives at once from (31) 

p,(E) -(1 -in) &(E-TO) + 1n8(E-To-I). (40) 

Thus the calculation shows that the system behaves as though it has two energy 
levels To and To + I containing 1--in and In states per atom respectively. Thus as 
electrons are added to the band, initially the Fermi-energy will be fixed ati To 
whilst the lower level fills up. The lower level will become full when 'n 1-n, 
i.e. n = 1, and the chemical potential /, then jumps to /, = To + I whilst the remain- 
ing electrons are added. This is just the correct result. As electrons are added they 
will (at 0 = 0) distribute themselves on different atoms giving ,u = To until when 
n = 1 this is no longer possible and any further electrons added have to go on atoms 
which have already one electron so ft jumps to To+ I. A similar discussion can be 
given for other properties such as specific heat, behaviour in a magnetic field, at 
0 = 0 and at finite temperatures; in all cases the Green function solution yields 
the correct result for a collection of isolated atoms. 
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Electron correlations in narrow energy bands 249 

6. AN APPROXIMATE SOLUTION OF THE CORRELATION PROBLEM 

In this section the correlation problem for the Hamiltonian (10) will be studied 
in the finite bandwidth case by the same technique used in the last section. In the 
present calculation, however, certain additional terms appear which have to be 
treated approximately to obtain a solution. 

Returning to the Hamiltonian (10), one finds 

[cioH H] = T.j cjC + Ini, ci, (41) 
j 

[ni.) AH] = ETij (clo- cj, - Ctjc (42) 

so the equation for G'T defined by (29) becomes 

EGq.(E)= 2 ij +ETi (43) 

where FPT is again defined by (36), but now satisfies the equation 

EFPj(E) = <ni +To +IrT. 

? E Tik <<ni, -_C0k; Cj?>>E 
kEi 

? E T.e{?<cit rek-o-Cio C>?E -?4Ce _Ci, 7i,; CI.>>E}. (44) 
kti 

The term IriF has been obtained by using n2;_< = , while the term To FIT 
has been obtained by separating out the i = k part of the fourth term. The first 
three terms are identical with those of (37) while the latter pair of terms vanish in 
the zero band-width limit. Thus, whatever approximations are made in the last 
pair of terms of (44), one will obtain a theory that goes over into the exact solution 
in the zero bandwidth limit. 

In order to break off the sequence of Green function equations an approximate 
expression will be substituted for the last pair of terms in (44). These approximations 
are obtained by the methods indicated by Zubarev, and are given by 

<<ni, ackd; c?>>E <ni, -C> Go' (E); (45) 

<<Ci' r c'k, aCid; CL>E <CckCk>G"j(E); (46) 

<<Ct _Ci,_Ci;ct Ct>> <CCi, -0> Gq'.(E). (47) 

By making these approximations one obtains what is practically the crudest 
theory possible consistent with the condition that it reduces to the correct zero 
bandwidth limit. One shortcoming of the theory which arises from these approxi- 
mations is pointed out in ? 8. 

Other important physical effects neglected as a consequence of these approxi- 
mations are associated with collective motions of the spin-wave type (see authors 
cited in the Introduction) and zero-sound type (Landau 1957). 
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250 J. Hubbard 

With the approximations (46), (47), the last term of (44) vanishes as a consequence 
of translational symmetry, since 

E2 Tie (ct. -ic Ck> = N-1 L' Ti <ci, Ck ,-> 
k +i i, k 

=Nb-1 ETik<Ck _'ci, 
f> = E Tik <Ck,-SiC> 

i, k k~i 

where Ti = Tki which follows from Xk= 6-k has been used, and L' means the 
double sum with the term i = k omitted. is k 

In (45) we will now put <ni= no, (48) 

which follows from translational symmetry. Strictly speaking it follows from the 
symmetry of the problem that nr is independent of a' and therefore equal to 21n. 

However, it would seem intuitively evident that when solutions of the equations 
with n t + n l exist, these solutions are connected with the possible ferromagnetisni 
of the system (provided they have lower energy than the non-magnetic solution). 
One can, perhaps, rationalize this situation by imagining that a minute magnetic 
field is applied to the system; this field destroys the symmetry between up and 
down spin, but is so small that it can be neglected in the calculations. To discuss 
this situation in detail would go far beyond the scope and intent of the present paper. 
It may be remarked that a similar situation exists in the zero bandwidth case dis- 
cussed in the preceding section, but that nothing new would be found there by 
considering solutions for which n t 1 n J. One might also inquire whether meaning 
can be assigned to solutions (forbidden by symmetry) for which <ni> is not in- 
dependent of i or even for which quantities like <ctK cj -,> do not vanish. The answer 
would seem to be that these solutions correspond to the possibilities of antiferro- 
magnetism, spiral spin arrangements, etc., but only solutions falling under (46) 
will be investigated here. 

Substituting the approximations (45) to (47) into (44) one obtains 

EPT. = n_,- 6ij Jr (To + I ) rtj + en-, E TzZ Gkj, (49) 
2ir~~~~~~ 

whence P(E) E= {2TT+ E2kG7C } (G0) 

which when substituted into (43) gives 

EGOj (E) = To G j +G? I} (51) ? j \ ~~E-To-IJ 27T k7c-r! i 

This equation may be solved by Fourier transformation. Writing 

GC' (E) = 1 E Go(q, E) exp [iq. (Ri-Rj)] (52) 
q 

and using (7), one obtains from (51) 

EGG(q, E) = ToGo(q, E) + I + In, + (c,-TO) Ga(q, E) (53) 
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whence C-(q E) = I E-To-1I(-n-,f) (54) 
2nrN (E -eq) (E -To -I ) + nazi 1(TO -Xc)' 

which gives the approximate solution to the correlation problem which has been 
sought. The properties of this solution are discussed in the next section. 

7. PROPERTIES OF THE APPROXIMATE SOLUTION 

The general nature of the solution given by (54) will next be investigated. The 
expression (54) for Glr(E) is a rational function of E and may be resolved into partial 
fractions according to 

1 1)- E(')-To-I (l n ) En(q2)-T -1(1-n )n Go' 2 {qEE (2)q Eq-- -2 E-X() (55) 

where E(1) < E(2) are the two roots of 

(E:-) (E-To-I) r+ nI(TO -e) = 0. (56) 

It can be shown that E(1) < To+1I(l-n-,) 
< E2), so (56) has the form 

Go(q, E) = 2 AqN {ETEg+) + EEA' (57) 

with A('), A(2) > 0. If one had AM = A(2) = 1, then the expression (57) would be 
the Green function appropriate to a band structure having two bands with the 
dispersion laws E = E-() and E E(2). The effect of the factors A( cannot be given 
any very simple interpretation beyond saying that they reduce the density of states 
in each band in such a way that the total number of states per atom in both bands 
together is just l and not 2 as it would be if A0-) = A(2) 1. One may see this 
directly by noticing that from (31) and (52) one has 

p(E) = i lim E {GC(q, E + ic) - Ga(q, E - i6)}, (58) 
e>O + q 

which gives on substitution of the expression (57) for Gf(q, E) 

pa(E) = NI1 E {A(1) 8[E-E(1)] + A(2) 6[E-E(F2)]}, (59) 
q 

and finally noting that A()+ A(2) = 1. (60) 

The general form of the band structure El), E(2)given by (56) is sketched in figure 1. 
In the limit I -?0, the lower E(1) curve goes over into APX and at the same time 
A0) -1 Ialong AP and A(') O along PX. Similarly, the upper curve goes over 
into BP Y, A-(2) 1 along PY. Thus as the interaction is switched off the two por- 
tions AP and P Y combine to make up the unperturbed band structure, the other 
parts disappearing. That Go(E) goes over into the unperturbed Green function 
(2ITN)-1 (E - cq)-1 as I -? 0 can also be seen directly from (54). 

In the limit of zero bandwidth, cq -? To, the E(1), E(2) curves become flat and go 
into E(1) = To, E(2) = T0 + 1, giving the two levels containing (1-n-,) and n_, 
states respectively discussed in ? 5, the expression (59) going over into that of (40) 
after q-summation. 
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Next, a more explicit expression than (59) for p,(E) will be derived. From (55) 
and (58) one can obtain after a little manipulation the formula 

po.(E) = IE-To -I(1 --n_)I N-1 8[(E-cq) (E-To-IJ) ? In-(To-cq)] 
q 

= f dtIE-To-I(1-nl f)II[(E -)(tE-oJ -I)+In(,(To-t)]N-1 M [t-eq] 

-= dtP(t)8 (EET-q-J)+InP0 ?t] 

_ P{g(E, n_)}, (61) 

E)(2 

B-q 

B 

A E=Eq 

q=O qo- Brillouin zone 
boundary 

FIGURE 1. A sketch of a typical pseudo-particle band structure Eql) Eq2) APY gives 
the unperturbed band structure while BPX is the line E = To + I. 

where g(E,nJ) = E-In -E- 1_,,(1n-,,) (62) 

and P(E) = WN1,(E-eq) (63) 
q 

is the density of states corresponding to the band structure 6k. 
Thus p,(E) is obtained from P(E) by the simple transformation (61), (62). This 

transformation is illustrated graphically in figure 2 which shows a typical g(E) 
curve and the projection of P(E) into p,(E). In the limit I - 0 the curve g(E) goes 
over into the straight line AOB. The splitting of the band into two parts is seen to 
be due to the infinity of g(E) at E = To + I(l -nJ). 

In order to obtain some feel for the properties of the solution, it is, perhaps, 
useful to consider the simple example given by the 'square' density of states 
formula P(E) = 1/A if To-'A < E < T0+'A 

= 0 otherwise, (64) 
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for which one easily finds 

p,,(E) = 1/A if EWCl,_. < E < EC1,1 
or if E0> < E <E1l,, 

=0 otherwise, (65) 
where (soe, 5= ? 1) 

E0, = To?+ -I?lA+ xV /{(-I21-%l/A)2+ -i/AIn- }. (66) 

One may note that since (E1, I-E1,1) + (El, 1 -E1, l) A, the p,(E) band 
contains just one state per atom as it must. 

S(E)e lo, oB 

* ~ ~~~ Ed 

p eprofile of P(E) 

-I ~ ~ E- 

FIGURE 2. A sketch of a typical g(E, n) curve. The projection of the unperturbed density of 
states function P(E) into the pseudo-particle density of states p,(E) is indicated. 

Turning attention now to non-mragnetic solutions for which Ofnt = in 
(ferromragnetic solutions will be considered in ? 9), the Fermni energy It will be deter- 
mined by the equation , 

in P{g(E, In)} dEd (67) 

J-I. 

Thus It increases as electrons are added until the lower band is just full. It will 
then ju2Ap discontinuously as further electrons are added and then continue to 
increase smoothly until the whole band is full. If Ety of, Esin. are the highest and 
lowest energies of the band structure one can see at once from figure 2 that this jurp 
occurs from a value , to a value ju, at a density n, determined by the equations 

Emax. = g(jt,.2nic), (B8) 
Emin. = 9(/->, Zinc), (69) 

= J P{g(E, 1n)}dE( 
_00 

where in (68) the smaller and in (b9) the larger root must be taken. 
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In general ne + 1, but in the case of the density of states curve (64), the sym- 
metry between electrons and holes or, to be more precise, the fact that in this case 
P(E) has the property P(2To - E) = P(E), requires that n, = 1, giving a discon- 
tinuity in ,a of /(I2 + A2) - IA, (70) 

which goes to 0 as I -? 0 and tends to I as A -l- 0. 

8. A TWO-ELECTRON EXAMPLE 

In order to obtain a better physical understanding of the solution obtained in the 
preceding sections, and in particular how the band splits into two parts, it is in- 
structive to consider the problem of two electrons moving and interacting in the 
manner described by the Hamiltonian (10). Essentially the same problem has been 
considered by Slater et al. (I953) who were mainly interested in the effect of corre- 
lations on the condition for ferromagnetism. 

Denote by 3fr(i, j) the spatial wave function of an eigenstate of the two electron 
system, I 1/i(j, j) 12 measuring the probability of finding one electron on atom i and 
the other on atom j. Of the 4N2 possible states of the system 3N2 are spin triplets 
for which 7f(i, j) =-?f-(j, i), and the other N2 are singlet states for which 
?4(i, j) = ?f (j, i). If #-(i, j) is an eigenstate with energy E of the Hamiltonian (10), 
then El(i, 1j) = E %Tk V(, j) ? Z TIk Vf(t, k) + ?ij/(i, i). (71) 

k k 

Since for the triplet states #f (i, i) = 0, the last term of (71) vanishes for these 
states, so the triplet states are quite undisturbed by the interaction. This is simply 
because the Hamiltonian (10) only contains interactions between electrons of 
opposite spin. Thus attention can be restricted to the singlet states. 

In the singlet case we now write 

V/'(i, j) = N-1 E E (k, K) exp {iK. (Ri + Rj) + 1 ik. (RX-R3)}. (72) 
K k 

Substituting this into (71) and using (7) one obtains 

EqS(kK) =eK+ik + C-Ak} qS(k, K) + IN 1 E5(k, K). (73) 

Thus solutions with different 'total momentum' K are not coupled to each other, 
a consequence of translational symmetry. From (73) one has at once 

IN1' E0 (k', K) 
50(kn K)-E k-' (74) 

E-cKx+ik-eKk (74 

whence 1(75) 
NE-6x+1k-e1K-2k 

gives the energy levels for a given K. 
The nature of the solutions of equations of the type (75) are well known. The 

equation has N roots. The right-hand side has infinities at the N energies given by 

E = 6K+K?k +6Ksk (76) 
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for the N values of k, so there are (N - 1) roots trapped between these infinities. 
These N - 1 roots lie in the unperturbed energy band given by (76). There is one 
other root. For large enough I this root is quite separate from the band (76), forming 
a 'bound' state. When I is large compared to the width of the band (76), this root 
is given by To + I as may easily be seen from (75). For small I this 'bound' state 
does not separate from the band (76). 

Thus for large I there are N(N - 1) singlet 'scattering' states lying in the un- 
perturbed band and N 'bound' states (one for each of the N values K) with high 
energy. In the limit I -- oc the latter states disappear altogether. This is a result 
of an 'excluded' volume effect of the type familiar from van der Waals's equation. 
When I -> oc no two electrons can be on the same site. Thus if one electron is already 
present (in any one of its N possible states) and another electron is added, then there 
are only N - 1 states available to this second electron, whence it follows that there 
are only N(N - 1) possible states available to the two electron system rather than 
the N2 possible states for a pair of non-interacting electrons. When I is large but 
finite the remaining N states reappear with high energy. One may now surmise 
that when m electrons are already present then only N - m states are available (in 
the limit I -- co) to any further electron added to the system, the remaining m 
states reappearing with high energy when I is finite but large. In this way one can 
understand how the two bands of figure 1 arise. The lower band is essentially the 
unperturbed band with some states excluded, these states reappearing in the upper 
band. 

This example reveals a weakness of the approximate solution of? 6. The discussion 
given above only applies when I is sufficientlylarge for the 'bound ' states to separate, 
but the solution of ? 6 gives a splitting into two bands for all non-zero I. Obviously 
the approximation is over-estimating the importance of correlation effects for small 
I, presumably as a consequence of the drastic approximations of equations (45) 
to (47). 

9. THE CONDITION FOR FERROMAGNETISM 

In ?3 the condition for ferromagnetism predicted by Hartree-Tock theory 
was considered. Here the way in which this condition is affected when corre- 
lation effects are taken into account (in the approximation of ? 6) will be 
examined. 

One expects the condition for ferromagnetism to be more restrictive in a theory 
which takes into account correlation effects than in Hartree-Fock theory. The 
reason is simply that ferromagnetism occurs when the (free) energy of the ferro- 
magnetically alined state is less than that of the non-magnetic state. Now, when 
correlation effects are taken into account it is mainly the correlations between 
electrons with anti-parallel spin which are being introduced since electrons with 
parallel spin are already kept apart by the Fermi-Dirac statistics even in the 
Hartree-Fock approximation. Thus the introduction of correlation effects will 
lower the energy of non-magnetic states more than that of the ferromagnetic states, 
and so make the condition for ferromagnetism more stringent. This is indeed found 
to be the case. 
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Using the formula (61) for the density of states and the condition (17), no is 
determined at the absolute zero of temperature by the condition 

n=. f_ P{g(E, n - n,)} dE, (77) 

which is the analogue of (18); ,u is determined by the condition (17). One can now 
take over the discussion of the condition for ferromagnetism in Hartree-Fock 
theory given in ? 3 almost word for word. One finds that the condition that ferro- 
magnetism just be possible is that nt = n, = ln is a double solution of (77). This 
condition is just (67) together with 

-2 
- 

a a [P{g(E, n)}] dE. (78) 

It is difficult to picture the condition (78) without reference to some specific 
density of states function P(E). Consider then the density of states function given 
by (64). In this case Hartree-Fock theory gives according to (21) the condition for 
ferromagnetism I > A (79) 

independently of n. To investigate the form taken by the condition (78) in this case 
one may note that the density of states formula (65) can also be written 

po(E) = (/1A) {O(E-E E ,1)-O(E-E 1,)+ O(E-EE, -1)-O(E-E )}, (80) 
which when substituted into (78) gives 

AJz ?ifii dn+8 - dy E- i)dE. (81) 

If at is in the lower band, EC 1, -1 < A < E11 (one need only consider this case 
because of the symmetry between electrons and holes) then this condition becomes 

1 < I <l. 1 (82) 
A an ,(2 

or, using the formula (66) with n_ = In 

V{(I J+ IA)2- lnAI} (83) 
Since ,a is in the lower band one must have n < 1. But for n < I the condition (83) 
cannot be satisfied for any I and A. Thus the approximate correlation theory of 
? 6 predicts that ferromagnetism is not possible for the density of states function 
of (64) even though Hartree-Fock theory gives the condition (79). 

It might now be inquired whether the impossibility of ferromagnetism in a 
general consequence which can be deduced from the approximate solution of ? 6. 
That the answer to this question is no, can be demonstrated at once by giving an 
example of a density of states function P(E) for which ferromagnetism is possible. 

Consider the density of states function 
P(E) = 1/d if To- A < E < To--!A + 8 

or if To+;A-a<E<To0+4A 
=0 otherwise, (84) 

which represents two square bands of width ad symmetrically disposed about To. 
This density of states might be thought of as an approximation to a more general 
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density of states function which has two high peaks at each end of the band and 
a low density of states in between. By a discussion similar to that given above for 
the density of states function (64) one may show that for small g the condition for 
ferromagnetism is IAI 

V{( ' + 1/A)2 - QAI}' (85) 
which can always be satisfied by making 6 small enough. 

From this example some impression can be gained of what conditions are favour- 
able to ferromagnetism. It is clear that (85) can only be satisfied if a is somewhat 
smaller than A from which one may infer that it is necessary that the Fermi energy 
be in a part of the band in which the density of states is rather greater than the mean 
density of states throughout the band. Further, one may note that since the right- 
hand side of (85) is a monotonic increasing function of A, for fixed a the condition 
(85) is more easily satisfied for large A. This suggests that the most favourable 
condition for ferromagnetism is when the Fermi energy lies in a high density of 
states peak which is well away from the centre of gravity of the band, and that a 
high density of states peak in the middle of the band would be ineffective in 
producing ferromagnetism. 

Finally, one may note that since for the band structure (85) p(,a) = 1/1, the 
condition (85) can formally be written 

1 < Iex.P(I) (86) 

analogous to (21) provided one defines an 'effective intra-atomic exchange energy' 
Iex. by 1_AX 

IX. 4V{( I-iA)2- nAI} (87) 

Ile is always less than I, the reduction being due to the weakening of exchange 
interactions by correlation effects. From (87) one sees that even when I becomes 
very large ex. never becomes much greater than the bandwidth A. 

The author thanks Dr P. W. Anderson for a very helpful discussion on certain 
S nAUTUl.0 nf thi1; workpl 
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