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The short-range, one-band model for electron correlations in a narrow energy band 
is solved exactly in the one-dimensional case. The ground-state energy, wave function, 
and the chemical potentials are obtained, and it is found that the ground state exhibits 
no conductor-insulator transition as the correlation strength is increased. 

The correlation effect of electrons in a partial­
ly filled energy band has been a subject of inter­
est for many years.1"4 A realistic model which 
takes this correlation into consideration, and 
which is hopefully amenable to mathematical 
treatment, is the short-range, one-band model 
considered by a number of authors.2"5 In this 
model, one pictures the electrons in a narrow 
energy band hopping between the Wannier states 
of neighboring lattice sites, with a repulsive in­
teraction energy between two electrons of oppo­
site spins occupying the same lattice site. The 
central problems of interest have been (a) the 
possible existence of a "Mott transition" between 
conducting and insulating states as the strength 
of the interaction is increased, and (b) the mag­
netic nature (ferromagnetic or antiferromagnet-
ic) of the ground state. While previous t reat­
ments of this model have always been approxi­
mate, we have succeeded in solving the model 
exactly in the one-dimensional case. Our exact 
result shows that the Mott transition does occur 
in the ground state of the one-dimensional model. 
Furthermore, a general theorem of Lieb and 
Mattis6 on one-dimensional systems tells us that 
the ground state is necessarily antiferromagnetic. 

It may be argued that the absence of a Mott 
transition in one dimension is irrelevant for the 
study of real three-dimensional systems because 
of the folkloristic dictum that there are never 
any phase transitions in one dimension with 
short-range interactions. In actual fact, the dic­
tum is only true for nonzero temperature; the 
ground state is another matter. Generally speak­
ing, when a Hamiltonian is considered to be a 
function of some parameter, U (which in our 
case is the electron-electron repulsion), singu­
larities with respect to U usually do appear in 
the ground-state wave function, energy, polariz-
ability, etc., even in one dimension. A good ex­
ample of this is the one-.dimensional Heisenberg 
chain (to which the present model is very close) 
which, when considered as a function of the an-
isotropy parameter, does have two singularities 

in the ground state and, presumably, no singu­
larities for nonzero temperatures.7)8 

Consider a crystal (one-, two-, or three-di­
mensional) of Na lattice sites with a total of N 
^2Na electrons. We suppose that the electrons 
can hop between the Wannier states of neighbor­
ing lattice sites, ajid that each site is capable of 
accommodating two electrons of opposite spins, 
with an interaction energy U>0. The Hamilton­
ian to consider is then2"5 

W> o- i 
(1) 

where Cjfft,c,-0 a re , respectively, the creation 
and annihilation operators for an electron of 
spin a in the Wannier state at the ith lattice site, 
and the sum 

is restricted to nearest-neighbor sites. 
Firs t of all, it can be shown that the energy 

spectrum of H is invariant under the replacement 
of T by - 7 \ 9 Therefore, for simplicity we shall 
take, in appropriate units, T = - l . Since the 
numbers JW of down-spin electrons and M' of up-
spin electrons a re good quantum numbers (M +M' 
= N), we may designate the ground-state energy 
of H by E(M,M'; U). It is then easy to derive the 
following relations [by considering holes instead 
of particles in (1)]: 

E(M,M';U)=-(N -M-M')V 

+ E{N -M,N ~M';U) 
a ' a ' 

=MU+E(M,N -M';-U) 

=M'U+E(N -M,M';-U). (2) 

Without loss of generality, therefore, we may 
take 

S z{(N-2M)>0 and N^N 
z a 

(less than half-filled band). 
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It can similarly be shown that the maximum en­
ergy G(Af,M'; [/) is related to the ground-state 
energy by 

G(M,M';U)=M'U-E{N -M,M';U). 

Therefore, a knowledge of the ground-state ener­
gies also tells us about the maximum energies. 

For a one-dimensional system, the lattice 
sites can be numbered consecutively from 1 to 
Na. L e t / ( x 1 , x 2 , - - - , * M > * M + 1 »••* >*tf) repre­
sent the amplitude in $ for which the down spins 
are at the sites x\, • • • ,xj^, and the up spins at 
XM+ 1' * " ' XN' T n e n t n e eigenvalue equation Hip 
=Eip leads to 

N 
- E £ ftev---,x. + s,---,xN) 

i=ls=±l 

+ U £ 6(x.-x)f(Xl- --x^ 
t<) 

= E/(Xl---xN), (3) 

where it is understood that we require a solution 
of the form 

which is antisymmetric in the first M and the 
last N-M variables. 

In each region defined by 1 * * Q I *SXQ2:6' ' 'XQN 
^N, we make the following Ansatz fo r / : 

/ ( V - ' V X A / + I ' " - ' V 
N 

= £[Q,P]exp(z Tjk x ), 
P j = \ P} Qj 

(5) 

where P = (P1.P2, ••• ,PN) and Q = (<?1,Q2, • • • , 
QN) are two permutations of the numbers (1,2, 
••• ,N), {fei,*2."' 'kN^ i s a s e t o f ^ unequal 
real numbers, and [Q,P] is a set of NlxNl coef­
ficients to be determined. 

The coefficients [Q,P] are not all independent. 
The condition of single valuedness (or continuity) 
of/ and the requirement that (5) be a solution of 
(3) lead to the following: 

N 
E = -2 £ cos* . (6) 

; = 1 J 

and, for all Q and P , the coefficients [Q,P] must 

be chosen to satisfy the relations 

[Q,ph-ynm
ab[Q,p'l 

In (7), 
^mn *s a n operator defined by 

Y °b -
ran sih£ -sin£ + ziV 

(7) 

n m 
sinfe -sin* 

n m pab 
(8) sink -sinfe + jz'i/ 

n m 

where, for j = i + 1, 

Qi=a = Q'j, Qj=b = Q'i, 

Qk=Q'k for all k*i,j; 

Pi=m=P'j, Pj = n = P'i, 

Pk=P'k for all £#?',;; 

and P ° is an operator which exchanges Qi =a 
and Qj = b. 

It is fortunate that the Ansatz (5) and the alge­
braic consistency conditions (7) and (8) have, in 
essence, appeared before in the study of the one-
dimensional delta-function gas for particles in a 
continuum. The first solution of that problem 
was for bosons (symmetric/) by Lieb and Lini-
ger10 but this case is not relevant here, besides 
which the consistency conditions there are trivial 
to solve. The two-component fermion case was 
solved by McGuire11 for M = 1, but again (7) is 
trivial because of translational invariance. The 
next development was the solution of the case M 
= 2 by Flicker and Lieb12 by an inelegant algebra­
ic method which could not be easily generalized. 
However, the case M =2 is the simplest one 
which displays the full difficulty of the problem. 
Shortly thereafter, Gaudin1' published the solu­
tion of the general-M problem. The method of 
his brilliant solution did not appear for some 
time and is now available as his thesis.14 In the 
meantime, Yang15 also discovered the method of 
solution (essentially the same as Gaudin's) and 
published it with considerable detail. Here, we 
have followed Yang's notation with slight modifi­
cation. 

The important point is that our Eqs. (7) and (8) 
are the same as for the continuum gas except 
for the replacement of k by sink in the latter. 
This has no effect on the beautiful algebraic anal­
ysis which finally leads to the following condi-
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tions which determine the set {*i,2i* • • >^N^: 

M 
N k. = 2rrr.+ Y\ 6(2 sink.-2\.), ; = 1, 2,- • •, N, 

0 1 } 0=1 ; * 

where the A's are a set of real numbers related to the k's through 

N M 
-Y;t){2A -2sinfe.) = 2irJ - £ <9(A ~ A ). a = l , V 

j = 1 Q ' 0 = 1 a * 

0(/.)s_2tan_1(2p/C/), -n^e<ir, 

,M. 

(9) 

(10) 

(11) 

and Ij = integers (or half-odd integers) for M = even (or odd), Ja = integers (or half-odd integers) for 
M' = odd (or even). An immediate consequence is 

N 
1 

; = 1 0 . 7 « 

(12) 

For the ground state, • Ja and /.• are consecutive integers (or half-odd integers) centered around the 
origin and satisfying Z/,-^,- = 0. 

In the limit of N- •», Na - <*>, M - <*> with the ratios N/Na, M/Na kept finite, the real numbers k and 
A are distributed continuously between -<? and Q"*ir and -B and B«w, with density functions p(fe) and 
a (A), respectively. Equations (9) and (10) then lead to the coupled integral equations for the distribu­
tion function p(k) and cr(A): 

2irp(k) = l + cos* I 
•B Wo(A)dA 
Bf^ + 16(sin*-A)2 ' (13) 

rQ U 
LQU2 + I 

%Vp(k)dk „ . . . rB AUa(A')dA' 
6(A- sin*)2 = 2MA) +)_B IP + 4(A-A<)2 ' 

(14) 

where <? and B are determined by the conditions 

J® p(k)dk = N/N , (15) 

/"^(AJrfA =M/N . •>-ti a 

The ground-state energy (6) now becomes 

E = -2N f®p(k)coskdk. 

(16) 

(17) 

We have established the following: 
(a) Equations (13)- (16) have a unique solution 

which is positive for all allowed B and Q. 
(b) M/N is a monotonically increasing function 

of B reaching a maximum of I at B = ». This is 
the antiferromagnetic case, Sz =0, and corre­
sponds to the absolute ground state. 

(c) N/Na is a monotonically increasing func­
tion of Q, reaching a maximum of 1 (half-filled 
band) at Q = n. 

For £ = » and Q = v, (13)-(16) can be solved in 
closed form by Fourier transforms with the r e ­

sult 

o(A) = (2ir)-lf°°seca(&U) 

x cos (w A )J0 (u> )du>, 

p(k) = (2v)~1 + n~1cosk 

'cos(u) sinfc)Jfl(a>)<ia) Jr°°cos(u)! 

exp(5a>{/) ' 

E = E($Na,iNa;U) 

•exp( |wt0] ' 

(18) 

(19) 

(20) 

where </0 and Jj are Bessel functions. 
To investigate whether the ground state is con­

ducting or insulating, we compute the chemical 
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potentials /i+ and n_ as defined in a forthcoming 
paper by Mattis16: 

li+ = E<tf+l,M;U)-E(M,M;V), 

H_^E[M,M;U)~E(M-\,M;U). (21) 

If fi+ and M_ are equal, the system has the prop­
erty of a conductor. If, on the other hand, we 
find fi+>M_, then the system shares the proper­
ty of an insulator. We can compute fi_ directly 
from (9) and (10) by replacing M —M-l and N 
— N-l, while letting all the k's, A's , and their 
distribution functions change slightly. The pro­
cedure is quite similar to the calculation of the 
excitation spectrum of the continuum gas.10 If 
N<\Na, we can compute fi+ in the same way and 
thereby find that fi+ = j i - for all U. If, however, 
N is exactly lNa, then we must compute u+ by 
using the first line of (2) which tells us that 

H+ = U-n_ (half-filled band). (22) 

The calculation of fi_ can be done in closed form 
for a half-filled band with the result 

r°° J,(w)dw 
M - = - 4 / co[l + exp(k>a)] 

= -4S(-i)"[(i + l»V)M4 
« = i 

(23) 

It can be established from (22) and (23) that, in­
deed, fi+>/i_ for U>0, and 

lim ; 
U~0 

- 0 . 

Therefore, we conclude that the ground state for 
a half-filled band is insulating for any nonzero U, 
and conducting for U = 0. That is , there is no 
Mott transition for nonzero U. This absence of a 
Mott transition is also reflected by the fact that 
the ground-state energy and the gi^and-state 
wave function are analytic in U on the real axis 
{except at the origin). 

We have also investigated the excitation spec­
trum E(p) for a given total momentum £ A - -P 
and a given value of Sz. Just as in the case of a 
continuum gas for which the spectrum can be re ­
garded as consisting of several elementary exci­
tations,10 '15 we find three types of excitations: 
(I) a "hole" state in the A distribution, (II) a 
"hole" state in the k distribution, and (III) a 

"particle" state in the k distribution. While the 
Sz =0 spin-wave state may have any of these 
three types of spectra, the Sz = 1 spin-wave state 
is always associated with the type-I spectrum. 
The type-I excitation has the lowest energy and 
is characterized by a double periodicity similar 
to that of an antiferromagnetic chain.7 In the 
limit 17 — 0, it goes over to E(p) = I sin/) I, while 
the type-II and -III spectra have the identical 
limiting form E(p)= 12sin(i/>)l. Detailed discus­
sions of these matters will be given elsewhere. 
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