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The phaseless Auxiliary Field Quantum Monte Carlo (AFQMC) method provides a well established
approximation scheme for accurate calculations of ground state energies of many-fermions systems.
Here we address the possibility of calculating imaginary time correlation functions with the phaseless
AFQMC. We give a detailed description of the technique and test the quality of the results for static
properties and imaginary time correlation functions against exact values for small systems. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861227]

I. INTRODUCTION

Over the last decades the study of many body quan-
tum systems at zero temperature has been systematically
supported by ab initio Quantum Monte Carlo (QMC) calcu-
lations. QMC are methods relying on a stochastic solution
of the imaginary time Schrödinger equation of the system.
As far as bosonic degrees of freedom are considered, QMC
calculations allow static properties, energetics, and structure
functions, to be computed exactly1–6 even for strongly
correlated systems, for which analytic approaches yield
only approximate results. Furthermore, the possibility of
reconstructing dynamical properties of bosonic systems, like
excitation spectra and response functions, from imaginary
time correlation functions (ITCFs) has been explored with
remarkable results.3, 7–13 On the other hand, for fermionic de-
grees of freedom the situation is considerably complicated by
the well-known sign problem:14, 15 the computational cost in-
creases exponentially with the system size. The most widely
employed scheme to reduce the problem to polynomial
complexity is the Fixed-Node (FN) approximation:16, 17 FN
restricts the stochastic sampling of the configurational space
to regions where the sign of a reasonable approximation
for the ground state wave function, the trial wave function,
remains constant. Such approximation provides very accurate
estimations of ground state properties.16–19 Nevertheless, FN
may give inaccurate results for imaginary time correlation
functions even when the nodal structure of the ground state
wave function is exactly known: as an example, in Fig. 1 we
show the comparison between exact and FN imaginary time
correlation functions of the density fluctuations 〈ρ̂q(τ )ρ̂†

q〉
for a 2D system of 5 noninteracting spinless fermions. Such
mismatch arises from the imposition of the ground state nodal
structure as a subset of the nodal structure of all excited states.

It is thus very interesting to investigate the accuracy of
the imaginary time correlation functions calculated by QMC
using nodal restrictions different from FN.

In recent years alternative QMC methods have been con-
ceived, which simulate the imaginary time evolution with a

suitable stochastic process taking place in the manifold of
Slater determinants.18, 21–23, 25 In the present work we consider
one of such QMC methods, the phaseless Auxiliary Field
Quantum Monte Carlo (AFQMC),21, 23, 26 which is considered
less sensitive than FN to the quality of the trial function.31

However, the phaseless approximation is less known than
those characterizing configuration QMC methods, and its ac-
curacy in the calculation of imaginary time correlation func-
tions is unknown. We give a detailed description of AFQMC
and present its application to the calculation of imaginary time
correlation functions. To assess the accuracy of the phase-
less AFQMC we compute ITCFs for a class of interacting
fermionic models amenable to exact diagonalization of the
hamiltonian.

The phaseless AFQMC and its extension to the calcula-
tion of imaginary time dynamics are described in Sec. II. The
solvable fermionic systems are presented in Sec. III. Results
of numeric calculations are presented in Sec. IV, and conclu-
sions are drawn in Sec. V.

II. THE PHASELESS AFQMC

As mentioned in the Introduction, Quantum Monte Carlo
are ab initio: this means that the starting point is the Hamil-
tonian operator of a physical system. We thus present the
phaseless AFQMC relying on a very general hamiltonian
operator:

Ĥ =
M∑

i,j=1

βij â
†
i âj +

M∑
i,j,k,l=1

γijlk â
†
i â

†
j âkâl . (1)

The creation and destruction operators appearing in (1) are
related to an orthonormal complete set of orbitals {|ϕi〉}Mi=1 in
the single-particle Hilbert space, which we will denote H . M
is the dimension of such Hilbert space; we will make the as-
sumption that M < +∞. The above written Hamiltonian op-
erator acts on the fermionic Fock space, F , built upon the one
body space H . Throughout this paper, we will fix the number

0021-9606/2014/140(2)/024107/12/$30.00 © 2014 AIP Publishing LLC140, 024107-1
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FIG. 1. FN result (points) and exact value (line) of the imaginary time corre-
lation function of ρ̂q with q = 2π

L
(0, 1) for a 2D system of 5 noninteracting

spinless fermions. Details of the calculation are presented in Appendix B.

of particles N, which is a constant of motion for (1). Within
the N-particles subspace of the Fock space F , the operator Ĥ

has the spectral resolution:

Ĥ =
∑

α

εα |
α〉〈
α|, (2)

where {εα}α are the eigenvalues and {|
α〉}α the eigenvec-
tors. Naturally the above expression is N-dependent, but we
will not include an explicit label N to simplify the notation.
The sum over α ranges from 0 to the dimension of the N-
body fermionic space, equal to

(
M

N

)
. While zero temperature

equilibrium properties of an N-particle system are completely
determined by the ground state of (1), |
0〉, the study of dy-
namic properties requires knowledge of the spectrum {εα}α .
Throughout the present work we shall make the technical as-
sumption that ε0 < ε1 ≤ . . . , i.e., the N-particle ground state
is non-degenerate.

A wide class of QMC methods relies on the observation
that the imaginary time propagator

e−τĤ , τ ≥ 0 (3)

enables the ground state of an N-particle system to be recov-
ered. In fact, as long as a trial state |�T〉 has non-zero overlap
with |
0〉 the following relation holds:

lim
τ→∞ e−τ(Ĥ−ε0)|�T 〉 = |
0〉〈
0|�T 〉, (4)

where the unknown quantity ε0 is replaced with an adap-
tive estimate, according to a common procedure in Diffusion
Monte Carlo (DMC) calculations.16 QMC methods rely on
the observation that deterministic evolution driven by the fam-
ily of operators (3) can be mapped onto suitable stochastic
processes and solved by randomly sampling appropriate prob-
ability distributions.

Along with the typical approach in which (4) is asso-
ciated with a diffusion process in the configurational space
of the system,4, 5, 16 in a class of more recently developed
QMC methods, the so-called determinantal18, 19, 21–23 meth-
ods, (4) is mapped onto a stochastic process in the abstract

manifold, which we will denote D(N ), of N-particle Slater
determinants.

In AFQMC,20–24, 26, 28–30 the association between (4)
and a stochastic process in D(N ) is made possible by a
discretization:

e−τ (Ĥ−ε0) = (e−δτ(Ĥ−ε0))n, (5)

with δτ = τ
n

, and by a combined use of the Trotter-Suzuki
decomposition of the propagator32, 33 and of the Hubbard-
Stratonovich transformation26, 34, 35 on the factors e−δτ(Ĥ−ε0).
The Hubbard-Stratonovich transformation is an operator
identity guaranteeing that

e−δτ(Ĥ−ε0) =
∫

dg(η) Ĝ(η) + O(δτ 2), (6)

with dg(η) standard 2M2-dimensional normal probability
measure, Ĝ(η) = eÂ(η) and Â(η) = ∑M

i,j=1 A(η)i,j â
†
i âj a suit-

able one-particle operator, the structure of which is discussed
in detail in Appendix A 2.

Equation (6) establishes a formal correspondence be-
tween an interacting fermion system and an ensemble of non-
interacting fermion systems subject to fluctuating external
potentials. The coupling with these external potentials is con-
trolled by normally distributed parameters η, called auxiliary
fields, integration over which recovers the interaction.

To quantitatively realize that (6) provides a random walk
representation of the imaginary time evolution, let us con-
sider the stochastic process defined by the succession of wave
functions:

|�n〉 = Ĝ(ηn−1) . . . Ĝ(η0)|�T 〉, (7)

where the operators Ĝ(ηk) are functions of independent nor-
mally distributed random variables ηk . It is known, and will
be shown in details in Appendix A 1, that, if |�T 〉 ∈ D(N ), all
the random variables |�n〉 take values in D(N ). Furthermore,
their average is given by

〈|�n〉〉ηn−1...η0 = 〈Ĝ(ηn−1) . . . Ĝ(η0)〉ηn−1...η0 |�T 〉

=
∫

dg(ηn−1) . . . dg(η0) Ĝ(ηn−1) . . . Ĝ(η0)|�T 〉

= e−nδτ(Ĥ−ε0)|�T 〉 + O(δτ 2). (8)

Expression (8) clearly shows that the solution of the imagi-
nary time Schrödinger equation (4) can be recovered as av-
erage of a suitable stochastic process, the structure of which
is suggested by (7). Combining (4) and (7) it is evident that
numerical sampling of such stochastic process provides a
stochastic linear combination of Slater determinants, repre-
senting an estimation of the ground state of (1). The most
natural choice of the trial function |�T〉, which we will use
throughout the present work, is the Hartree-Fock ground state
of the Hamiltonian, i.e., the lowest energy Slater determinant.

A. Control of the fermion sign problem:
The phaseless AFQMC

Despite its formal simplicity, the straightforward numeri-
cal implementation leads in general to an exponential increase
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in statistical errors with the imaginary time, due to the fact that
complex random phases appear during the evolution (4).

S. Zhang invented a modification of the stochastic pro-
cess through the introduction of an importance sampling
transformation26 that guides the random walk, closely resem-
bling the typical scheme adopted17 in configurational DMC
simulations. The state e−nδτ(Ĥ−ε0)|�T 〉 is rewritten in the fol-
lowing form, detailed in Appendix A 3 and equivalent to (8):

e−nδτ(Ĥ−ε0)|�T 〉

	
∫

dg(ηn−1) . . . dg(η0)

×W[ηn−1, ξn−1 . . . η0, ξ 0]

× Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉
〈�T |Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉 , (9)

where complex-valued shift parameters ξn−1 . . . ξ 0 and a
weight function have been inserted. The latter satisfies the re-
cursion relation:

W[ηn, ξn . . . η0, ξ 0]

= W[ηn−1, ξn−1 . . . η0, ξ 0]

×I[ηn, ξn; Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉], (10)

where the following importance function:

I[η, ξ ; |�〉] = e− ξ ·ξ
2 −η·ξ 〈�T |Ĝ(η − ξ )|�〉

〈�T |�〉 (11)

appears. The shift parameters are chosen to minimize fluc-
tuations in the importance function to first order in δτ . The
importance sampling expression (11) clearly shows the mech-
anism responsible for the appearance of the sign problem in
the framework of AFQMC: when the overlap between one or
more walkers and the trial state vanishes massive fluctuations
in the importance function occur, determining drastic statis-
tical errors in the AFQMC estimate (9) for the solution of
(4). In the method conceived by S. Zhang, the exact complex-
valued importance function appearing in (11) is replaced23 by

the approximate form:

I[η, ξ ; |�〉] 	 e−δτ (εloc(�)−ε0) × max(0, cos(θ )), (12)

where εloc(�) = Re[ 〈�T |Ĥ |�〉
〈�T |�〉 ] is the local energy functional,

and

θ = Im

[
log

[
〈�T |Ĝ(η − ξ )|�〉〉

〈�T |�〉

]]
. (13)

The derivation of such approximate form is detailed in
Appendix A 3. The first factor corresponds to the so-called
real local energy approximation, which turns (11) into a real
quantity, avoiding typical phase problems arising from com-
plex weights. The second factor, together with the introduc-
tion of the shift parameters, has been argued in Refs. 23 and
26 to keep the overlap between the determinants involved in
the random walk and the trial determinant far from zero. In
fact, the angle θ corresponds to the flip in the phase of
a determinant during a step of the random walk: the term
max (0, cos (θ )) is meant to suppress determinants whose
phase undergoes an abrupt change, under the assumption23, 26

that such behavior indicates the vanishing of the overlap with
the trial state.

Equation (9), together with the choice (12) for the evolu-
tion of the weights attached to the Slater determinants, gives
rise to the so-called phaseless AFQMC method.

The underlying approximation is known to be good for
the ground state, but ITCFs require sampling of excited states,
related to the fluctuations around the asymptotic distribution
of the random walk: this issue is largely unexplored, and the
aim of the present work is to address its accuracy. There is
no a priori motivation for concluding that the approximation
(12) is better than the FN for the exploration of the manifold
of excited states. One of the topics investigated in the present
work is the verification of this important point for a model
system by comparison with exact results.

We stress that the complex weights and the vanishing of
the overlap with the trial state, responsible for the appear-
ance of the sign problem in AFQMC, occur even for very
small systems, such as two particles with opposite spins: for
those systems, it is notoriously absent in configurational QMC
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FIG. 2. Steps of the convergence procedure for (N↑, N↓, rs, M) = (1, 1, 1, 49): (a) AFQMC estimate of the ground state energy per particle for several values
of Nw at fixed δτ = 0.001: Nw can be safely set to 80. (b) AFQMC estimate of the ground state energy per particle for several values of δτ at fixed Nw = 80:
δτ can be safely set to 0.003. (c) AFQMC estimate of Fn(0) for several values of m at fixed Nw = 80, δτ = 0.003: m can be safely set to 250.
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methods, since the spatial part of the wave function is sym-
metric and positive.

B. The algorithm

The so-far introduced observations give rise to a poly-
nomially complex algorithm for numerically sampling the so-
lution (4), the efficiency of which relies on the observation
that the walkers |�(w)

k 〉 lie in D(N ) and can be therefore
parametrized with an M × N complex-valued matrix, as dis-
cussed in Appendix A 1. The algorithm can be resumed in the
following sequence of operations:

1. A collection |�(1)
0 〉 . . . |�(Nw)

0 〉 of Slater determinants,
henceforth referred to as walkers, is initialized to a trial
state |�T〉.

2. For k = 0. . . n − 1 an adaptive estimate of the ground
state energy is produced according to the formula:

ε0 	 1∑Nw

w=1 W
(w)
k

Nw∑
w=1

W
(w)
k

〈�T |Ĥ ∣∣�(w)
k

〉
〈
�T

∣∣�(w)
k

〉 , (14)

normally distributed auxiliary field configurations
η

(1)
k . . . η

(Nw)
k are sampled, and walkers and weights are

updated according to∣∣�(w)
k+1

〉 = Ĝ
(
η

(w)
k − ξ

(w)
k

) ∣∣�(w)
k

〉
,

W
(w)
k+1 = W

(w)
k I

[
η

(w)
k , ξ

(w)
k ;

∣∣�(w)
k

〉]
.

(15)

3. An estimate for e−nδτ(Ĥ−ε0)|�T 〉 is given by

e−nδτ(Ĥ−ε0)|�T 〉 	
Nw∑

w=1

W(w)
n

∣∣�(w)
n

〉
〈
�T

∣∣�(w)
n

〉 . (16)

The ground state average 〈
0|Ô|
0〉 of a many-body observ-
able Ô not commuting with Ĥ is the m, n → ∞ limit of the
following formula:

〈�T |e−mδτ(Ĥ−ε0)Ôe−nδτ(Ĥ−ε0)|�T 〉
〈�T |e−(m+n)δτ(Ĥ−ε0)|�T 〉

(17)

for which manipulations analogous to the importance sam-
pling transformation, discussed in detail in Appendix A 4,
yield the following backpropagated27 estimate:

〈



(N)
0

∣∣Ô∣∣
(N)
0

〉 	
∑Nw

w=1 W
(w)
n+m

〈�(w)
BP,m|Ô|�(w)

n 〉
〈�(w)

BP,m|�(w)
n 〉∑Nw

w=1 W
(w)
n+m

, (18)

with∣∣�(w)
n

〉 = Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉,
∣∣�(w)

BP,m

〉 = Ĝ†(ηn − ξn) . . . Ĝ†(ηn+m−1 − ξn+m−1)|�T 〉.
(19)

Notice that the backpropagation technique is necessary
to obtain ground state averages from the random walk. In the
absence of backpropagation, only mixed estimates of the form
〈�T |Ô|
0〉
〈�T |
0〉 can be obtained, which coincide with ground state
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FIG. 3. Left column: exact nonvanishing (red crosses) and reconstructed (blue columns) components of the ground state for systems with N↑, N↓ = (1, 1),
(5, 0) (top to bottom), relative to all elements of the basis except |ϕ1〉 = |�T〉. Exact and reconstructed values of 〈ϕ1|�〉 are, respectively, 0.9937, 0.9939(2)
and 0.9926, 0.9885(3). Right column: exact (red line) and reconstructed (circles) imaginary time correlation function of the density fluctuation operator with n
= (1, 0) for systems with N↑, N↓ = (1, 1), (5, 0) (top to bottom). When not visible, error bars are smaller than the symbol size.
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TABLE I. Exact (column 6) and calculated (column 5) ground state energy
per particle in Hartree units, and overlap between exact and reconstructed
ground state (column 7) for various systems (parameters are listed in columns
1 to 4).

N↑ N↓ rs M ε0/N(AFQMC) ε0/N(exact) 〈
0|�〉

1 1 1 5 − 0.82255(5) − 0.82259 0.99999(5)
1 1 1 13 − 0.8315(1) − 0.8313 0.9999(1)
1 1 1 21 − 0.83338(6) − 0.83307 0.9989(7)
1 1 1 49 − 0.83476(7) − 0.83441 0.9882(4)
1 1 2 5 − 0.4282(1) − 0.4282 0.9629(3)
1 1 2 13 − 0.4351(1) − 0.4330 0.9650(2)
1 1 2 21 − 0.4359(3) − 0.4339 0.9586(2)
1 1 2 49 − 0.4362(3) − 0.4345 0.9594(5)
1 1 3 21 − 0.3020(3) − 0.2972 0.9253(8)
1 1 4 21 − 0.2320(4) − 0.2272 0.904(1)
5 0 1 9 0.11327(2) 0.11247 0.99185(1)
5 0 1 13 0.10726(3) 0.10591 0.98600(7)
5 0 2 9 − 0.19485(1) − 0.19751 0.9863(4)
5 0 2 13 − 0.19878(2) − 0.20311 0.9683(3)

expectations (17) only if Ô commutes with the Hamiltonian
Ĥ .

C. Imaginary time correlation functions

In a well-established approach7–12, 19 to the reconstruc-
tion of dynamic properties of many body systems, the dy-
namic structure factor of the single-particle operators Â, B̂:

SÂ,B̂(ω) =
∫
R

dt
eiωt

2π
〈
0|Â(t)B̂|
0〉 (20)

is recovered from their imaginary time correlation function:

FÂ,B̂(τ ) = 〈
0|Â(τ )B̂|
0〉
N

= 〈
0|Âe−τ(Ĥ−ε0)B̂|
0〉
N

(21)

though a numeric inverse Laplace transform. Being con-
structed with the imaginary time evolution operator, the ITCF
(21) is a natural quantity to be evaluated in QMC calculations.
Its evaluation in determinantal QMC methods, however, is
not as simple as in configurational QMC: straightforward
extension of the backpropagation technique to the evaluation
of (21) is in fact prevented because the single-particle
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FIG. 4. Imaginary time correlation function of the momentum shift operator relative to M = 5, 21, 49 at rs = 1 for N↑ = 1, N↓ = 1. In the right lower box,
comparison between AFQMC and exact Path Integral QMC calculations is given. When not visible, error bars are smaller than the symbol size.
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operator B̂ does not preserve D(N ). To overcome this diffi-
culty, we generalize the clever approach conceived by Feld-
bacher and Assaad24 for the calculation of dynamical Green
functions: we introduce the Hubbard-Stratonovich representa-
tion (6) of the imaginary time propagator in (21) and move the
operators Ĝ(η) to the right of B̂ = ∑M

ij=1 Bij â
†
i âj commut-

ing them with the operators â
†
i , âj . As discussed in detail in

Appendix A 5, this procedure determines the appearance of
two random matrices in the estimator for (21):

FÂ,B̂(rδτ ) = 1

N

∑
kl

Bkl

∫
dg(ηn−1) . . . dg(ηn−r )

×〈
0|ÂĜ(ηn−1) . . . Ĝ(ηn−r )â†
kâl|
0〉

= 1

N

∑
ijkl

Bkl

∫
dg(ηn−1) . . . dg(ηn−r )

×〈
0|Ââ
†
i âj Ĝ(ηn−1) . . . Ĝ(ηn−r )|
0〉

×D(ηn−1, . . . , ηn−r )ik D−1(ηn−1, . . . , ηn−r )lj ,

(22)

where D(ηn−1, . . . , ηn−r ) = eA(ηn−1) . . . eA(ηn−r ).
Further application of the importance sampling transfor-

mation and of the backpropagation technique yields, as ex-
plained in Appendix A 5:

FÂ,B̂(rδτ ) 	 1

N

1∑Nw

w=1 W
(w)
m+n−r

Nw∑
w=1

∑
ijkl

Bkl W
(w)
m+n

×
〈
�

(w)
BP,m

∣∣Ââ
†
i âj

∣∣�(w)
n 〉〈

�
(w)
BP,m

∣∣�(w)
n

〉
×D

(
η

(w)
n−1 − ξ

(w)
n−1, . . . , η

(w)
n−r − ξ

(w)
n−r

)
ik

×D−1(η(w)
n−1 − ξ

(w)
n−1, . . . , η

(w)
n−r − ξ

(w)
n−r

)
lj
.

(23)

III. A CLASS OF SOLVABLE SYSTEMS

We test the accuracy of the AFQMC results on a class
of simple systems for which exact numeric expression for the
spectral decomposition (2) of the Hamiltonian operator Ĥ can
be given. Let us consider the Hamiltonian of the 2D electron
gas,

Ĥ = ξ
√

N√
4πrs

+
∑
m,σ

2π

N

|nm|2
r2
s

â†
m,σ âm,σ

+
∑
σ,σ ′

∑
mnrs

1√
4Nπ rs

δnr−nm,nn−ns

|nr − nm| â†
m,σ â

†
n,σ ′ âs,σ ′ âr,σ ,

(24)
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0.8
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FIG. 5. Imaginary time correlation function of the momentum shift operator
relative to rs = 2, 3, 4 (top to bottom) for N↑ = 1, N↓ = 1 at M = 21. When
not visible, error bars are smaller than the symbol size.

where the single-particle Hilbert space H is spanned by the
plane wave orbitals |niσ 〉 with ni ∈ Z2, |ni |2 ≤ nmax for
some integer nmax and σ = ±1. The parameter rs ∈ (0, ∞)
controls the relevance of the interaction part and N stands
for the number of particles, and the constant ξ = −3.900265
arises from an Ewald summation procedure.37 For small num-
ber of particles N and low kinetic energy cutoff nmax the above
Hamiltonian defines a simple model which can be solved
exactly.38, 39

Knowledge of eigenvalues {εα}α and eigenvectors
{|
α〉}α of Ĥ allows exact calculation of the imaginary time
propagator:

e−τ(Ĥ−ε0) =
∑

α

e−τ (εα−ε0)|
α〉〈
α|, (25)
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of the projector |
0〉〈
0| onto the minimum energy
eigenspace, of backpropagated ground state averages:

〈�T |e−mδτ(Ĥ−ε0)Ô|
0〉
〈�T |e−mδτ(Ĥ−ε0)|
0〉

=
∑

α〈�T |
α〉e−mδτ (εα−ε0)〈
α|Ô|
0〉
〈�T |
0〉 (26)

and of backpropagated imaginary time correlation functions
(21):

FÂ,B̂ (τ )

= 1

N

〈�T |e−mδτ(Ĥ−ε0)Âe−rδτ(Ĥ−ε0)B̂|
0〉
〈�T |e−mδτ(Ĥ−ε0)|
0〉

= 1

N

∑
α,β〈�T |
α〉e−mδτ (εα−ε0)−rδτ (εβ−ε0)〈
α|Â|
β〉〈
β |B̂|
0〉

〈�T |
0〉
(27)

and the comparison of such quantities with AFQMC results.

We focus on the ITCF Fn(τ ) = 1
N

〈�0|ρ̂n(τ )ρ̂−n|�0〉 of
the density fluctuation operator:

ρ̂n =
∑
i,j

∑
σ

δni ,nj −n â
†
i,σ âj,σ (28)

and of its adjoint ρ̂
†
n = ρ̂−n.

IV. RESULTS

The phaseless AFQMC method represents the ground
state as a stochastic linear combination of Slater determinants
(16) from which accurate estimates of the ground state en-
ergy can be obtained.22, 26 However, much more information
can be obtained from the simulation. Here we present results
for the components of the ground state on the chosen basis
of the Hilbert space and for the imaginary time correlation
functions.

Each of the simulations presented below is character-
ized by two sets of parameters: (N↑, N↓, rs, M) define the
system under study, whereas (δτ,m,Nw) control the details
of the simulation. In particular, N↑ (N↓) is the number of
spin-up (spin-down) fermions, rs controls the strength of the
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FIG. 6. Imaginary time correlation function of the momentum shift operator relative to M = 9, 97 at rs = 1 (upper panel) and to M = 13, 97 at rs = 2 (lower
panel) for N↑ = 5, N↓ = 0. In the right box of each panel comparison between AFQMC and FN calculations (green crosses) is given. When not visible, error
bars are smaller than the symbol size.
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interaction, M fixes the order of the matrices with which the
algorithm deals, while m corresponds to the number of back-
propagation steps.

Apart from the basis set size M, which we keep small to
allow comparison with exact diagonalization, and we extrap-
olate to the joint limit δτ → 0, Nw → ∞,36 and m → ∞ to
eliminate sources of systematic errors.

As an example, we show in Fig. 2 the extrapolations for a
calculation with (N↑, N↓, rs, M) = (1, 1, 1, 49). Discrepancies
with respect to the exact results are therefore due to the only
uncontrolled approximations of the method, namely the real
local energy and the phase approximations (12).

A. Assessment of the accuracy

In Fig. 3 we show results relative to the simulation of sys-
tems with rs = 1, M = 13, for some values of N↑ and N↓. The
left panels of Fig. 3 show the components of the stochastic
solution on the Hilbert space basis functions. The little statis-
tical fluctuations around the x axis show that the random walk
visits a large number of states, while the significant compo-
nents of the AFQMC solution match those of the exact ground
state with good accuracy. The ITCF Fn(τ ) of the density fluc-
tuation operator (28) for n = (1, 0) is reported in the right
column of Fig. 3. The wave vector n has been chosen in the
lowest energy shell since it gives rise to nonvanishing ITCFs
even for small M. The agreement with exact values is remark-
able, in particular if compared with the discrepancy observed
for the FN result, Fig. 1: this constitutes the central result of
the present work.

For all these systems we computed also the ground state
energy per particle, and the overlap between exact and re-
constructed ground state: the results are listed in Table I, the
bias of the energy resulting of the order of 10−3EHa, which is
smaller than the FN bias using a Slater-Jastrow trial function
with plane-wave nodes.41

B. Computational issues

Although our primary interest is the assessment of the
accuracy of AFQMC in calculating the ITCFs addressed in
Sec. IV A, we explored the behavior of the method for larger
values of rs and M.

As rs increases, the interaction becomes more and more
important, and the overlap of the exact wave function with
the trial function becomes smaller. Also the increase in M,
which is required for the study of realistic models, makes the
stochastic exploration of the Hilbert space more difficult: in
particular, the calculation of ITCFs is further complicated by
the need of multiplying many exponentials of large matrices,
see (23), which induces instabilities at large imaginary time.
This problem is already known in the literature.24, 42

In Fig. 4 results appear relative to systems with N↑ = 1,
N↓ = 1, showing that AFQMC estimations of static and dy-
namic properties remain in satisfactory agreement with exact
values even if M is raised to 49. For M = 49 we are also in
good agreement with exact Path Integral QMC calculations,

TABLE II. Values of χ2 = 1
Nτ

∑Nτ

i=1
|F (AFQMC)

n (τi )−Fn(τi )|2
σ 2
i

for the various

systems presented. Nτ is the number of imaginary time instants.

N↑ N↓ rs M χ2

1 1 1 5 1.02
1 1 1 13 0.02
1 1 1 21 0.09
1 1 1 49 0.04
1 1 2 5 0.97
1 1 2 21 0.90
1 1 2 49 0.32
1 1 3 21 0.05
1 1 4 21 0.70
5 0 1 9 0.69
5 0 1 13 2.87
5 0 2 9 1.09

providing the exact result in the limit M → +∞, which can-
not be explored via exact diagonalization.

The algorithm is able to reproduce exact values even at rs

= 2, 3, 4 and M = 21, as shown in Fig. 5. Since it is known
that the degree of correlation in the uniform electron gas is
significantly higher in 2D than in 3D for given rs, the range of
densities covered well represents the typical realistic density
values in 3D (up to rs ∼ 5).

We complete the study with calculations relative to sys-
tems with N↑, N↓ = (5, 0). Results are shown in Fig. 6. For
M = 9 the quality of AFQMC calculations is still satisfac-
tory, even if we observe a small overestimate of Fn(τ ). Fi-
nally, for M = 97 we compared our results with FN calcu-
lations. We observe good agreement between the estimates of
the static property Fn(0) yield by both algorithms. As far as fi-
nite τ ITCFs are concerned, we found that the discrepancy be-
tween the two results qualitatively resembles the discrepancy
between exact solution and FN in the case of noninteracting
particles in Fig. 1: an encouraging result.

To quantify the quality of the presented results, the reader
may refer to Table II, where we report an average reduced
chi-squared.

V. CONCLUSIONS

In the present work we gave a detailed description of the
phaseless AFQMC algorithm, we proposed a scheme for its
application to the calculation of dynamical properties of zero
temperature fermion systems and we tested the methodology
against exact diagonalization for interacting few fermion sys-
tems. Such tests revealed that it is actually possible to com-
pute imaginary time correlation functions with satisfactory
accuracy, at least for systems with moderate number of par-
ticles and interaction strength. This is a very interesting re-
sult since it is known that there exist situations when the well
established and widely employed FN approximation scheme
provides inaccurate results for ITCFs. The present work indi-
cates that the AFQMC algorithm can become an accurate tool
to calculate dynamical properties of few body systems. We
hope that the accuracy of our results will encourage the devel-
opment of technical tools necessary to study larger systems,
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such as the numeric stabilization40, 42 of the products of ma-
trix exponentials involved both in the backpropagation27 and
in the calculation of imaginary time correlation functions. In
perspective, an accurate calculation of ITCFs is a prerequisite
for the analytic continuation7 leading to real-time dynamics
of quantum systems.
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APPENDIX A: ALGORITHMIC DETAILS

The aim of this appendix is completing the description of
the extended AFQMC outlined in Sec. II.

1. Properties of Slater determinants

For a generic Slater determinant |�〉 there exist
single-particle orbitals |ψ1〉 . . . |ψN 〉 ∈ H for which |�〉
= |ψ1. . . ψN〉−. As a consequence the state

|�〉 =
∑
i1...iN

〈ϕi1 |ψ1〉 . . . 〈ϕiN |ψN 〉|ϕi1 . . . ϕiN 〉−

=
∑
i1...iN

�i11 . . . �iNN√
N !

â
†
i1

. . . â
†
iN

|0〉 (A1)

is completely and uniquely described by the M × N matrix
� ij = 〈φi|ψ j〉.

In the light of such parametrization it can be proved43 that
for a generic N-particle Slater determinant |�〉 and a generic
one-body operator Ô = ∑

i,j Oij â
†
i âj the state eÔ |�〉 is still

a Slater determinant, described by the matrix eO�, so that
the manifold D(N ) of Slater determinants is closed under the
action of exponentials of single-particle operators.

Equation (A1) also enables the concrete calculation over-
laps and matrix elements of one-body and two-body oper-
ators. In particular, if |�〉, |
〉 are generic non-orthogonal
N-particle Slater determinants the following properties26, 43, 44

hold:

〈
|�〉 = det[
†�]

N !
,

〈
|â†
i âj |�〉

〈
|�〉 = [
�

[

†�

]

†]

ji
= Gij ,

〈
|â†
i â

†
j âkâl|�〉

〈
|�〉 = GilGjk − GikGj l .

(A2)

2. The Hubbard-Stratonovich transformation

It is well known that the coefficients γ ijlk describing
the interaction part of (1) satisfy the relation γ ∗

ij lk = γlkij

and can be consequently cast in a hermitian matrix �(ki)(jl)

= γ ijlk of order M2. Due to the spectral theorem �(ki)(j l)

= ∑M2

ζ=1 U∗
ζ (ki) �ζ Uζ (j l) for some real-valued coefficients �ζ

and some unitary matrix U of order M2. As a consequence,
(1) can be put in the form

Ĥ = Ĥ0 − 1

2

M2∑
ζ=1

�ζ

[
(Ôζ + Ô

†
ζ )2

2
+ (iÔζ − iÔ

†
ζ )2

2

]
,

(A3)

with

Ĥ0 =
∑
il

⎡
⎣βil +

∑
j

γij lj

⎤
⎦ â

†
i âl ,

Ôζ =
∑
j l

Uζ (j l) â
†
j âl .

(A4)

Notice that the interaction part of (A4) has been replaced with
a sum of squares of single-particle hermitian operators. In-
serting such expression in e−δτ(Ĥ−ε0) and applying a Trotter-
Suzuki decomposition:

e−δτ(Ĥ−ε0) = eδτ (Ĥ0−ε0)
M2∏
ζ=1

e
δτ
2 �ζ (Ôζ +Ô

†
ζ )2

e
δτ
2 �ζ (iÔζ −iÔ

†
ζ )2

.

(A5)
To each of the factors appearing in (A5) the Hubbard-
Stratonovich Transformation applies, yielding (6) with

Â(η) = δτ

2
(Ĥ0 − ε0) +

∑
ζ

√
δτ�ζ (η1,ζ + iη2,ζ )Ôζ + h.c.,

(A6)
which can be compactly written as

Â(η) = δτ

2
(Ĥ0 − ε0) −

√
δτ i B̂ · η. (A7)

3. The importance sampling transformation

We now explain in detail the derivation of Eq. (9). First
we introduce in the expression (8) n arbitrary and possibly
complex-valued shift parameters ξ 0 . . . ξn−1 obtaining

e−nδτ(Ĥ−ε0)|�T 〉 	
∫

dg(ηn−1 − ξn−1) . . . dg(η0 − ξ 0)

× Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉.
(A8)

Then we recall that

dg(η − ξ ) = dg(η) e− ξ ·ξ
2 −η·ξ (A9)
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and obtain (9) inserting the identity

Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉

= Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉
〈�T |Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)�T 〉

×
n−1∏
k=0

〈�T |Ĝ(ηk − ξ k) . . . Ĝ(η0 − ξ 0)�T 〉
〈�T |Ĝ(ηk−1 − ξ k−1) . . . Ĝ(η0 − ξ 0)�T 〉

× 〈�T |Ĝ(η0 − ξ 0)�T 〉
〈�T |�T 〉

= Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)|�T 〉
〈�T |Ĝ(ηn−1 − ξn−1) . . . Ĝ(η0 − ξ 0)�T 〉
×W[ηn−1, ξn−1 . . . η0, ξ 0]. (A10)

So far, the shift parameters are arbitrary. We subsequently fix
their values to contain fluctuations in the importance function
and therefore in the weight function. To this purpose, we ex-
pand Ĝ(η − ξ ) up to

√
δτ obtaining

Ĝ(η − ξ ) = I − i
√

δτ (η − ξ ) · B̂ + O(δτ ). (A11)

Introducing this approximation in (11) leads to

log[I[η, ξ ; |�〉]] = −|ξ |2
2

+ η · ξ − i
√

δτ
〈�T |B|�〉
〈�T |�〉

· (η − ξ ), (A12)

where the operation 〈�T |·|�〉
〈�T |�〉 shall be henceforth abbreviated

with 〈·̂〉. Imposing ∂η log[I[η, ξ ; |�〉]] = 0 fixes the value of
the shift parameters to

ξ opt = −i
√

δτ 〈B̂〉. (A13)

Insertion of (A13) into (11) yields the stabilized expression
for the importance function. A straightforward expansion of
this quantity in powers of

√
δτ leads to

I[η, ξ opt ; |�〉] = 1 − δτ (〈Ĥ 〉 − ε0)

− δτ

2
[〈|η · (B̂ − 〈B̂〉)|2〉 − 〈|B̂ − 〈B̂〉|2〉]

+O(δτ 3/2). (A14)

The real local energy approximations (12) are suggested by
the observation that the term in square brackets in (A14) has
zero average over auxiliary field configurations, and it con-
sists in neglecting all terms of order δτ in (A14) except for
the real part of 〈Ĥ 〉. The imaginary part of 〈Ĥ 〉 is neglected
because it vanishes for |�〉 equal to the ground state. Em-
pirical evidence shows that it is a reasonable approximation,
but to our knowledge it is not supported by mathematical
arguments.

4. The backpropagation technique

We now discuss the emergence of the backpropagated es-
timator (18). We express all imaginary time propagators ap-
pearing in (17) with (A8) and obtain the following represen-

tations for the numerator and the denominator:

〈�T |e−(m+n)δτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(η0)〈�T |
m+n−1∏

i=0

Ĝ(ηi)|�T 〉,

(A15)

〈�T |e−mδτ(Ĥ−ε0)Ôe−nδτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(η0)〈�T |

×
m+n−1∏

i=n

Ĝ(ηi)Ô
n−1∏
i=0

Ĝ(ηi)|�T 〉,

where the symbol
∏i2

i=i1
Ĝ(ηi) stands for the product

Ĝ(ηi2 ) . . . Ĝ(ηi1 ). Further application of the importance sam-
pling transformation and of identity (A10) yields

〈�T |e−(m+n)δτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(η0)W[ηm+n−1, ξm+n−1 . . . η0, ξ 0],

(A16)

〈�T |e−mδτ(Ĥ−ε0)Ôe−nδτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(η0)W[ηm+n−1, ξm+n−1 . . . η0, ξ 0]

× 〈�T | ∏m+n−1
i=n Ĝ(ηi − ξ i)Ô

∏n−1
i=0 Ĝ(ηi − ξ i)|�T 〉

〈�T | ∏m+n−1
i=0 Ĝ(ηi − ξ i)|�T 〉

the estimator for which is obviously (18). Notice that the same
weights appearing in (15) are involved in (18).

5. The phaseless AFQMC estimator for ITCFs

We now explain in detail the derivation of Eqs. (22) and
(23). The last passage of (22) is a manipulation of the opera-
tor product Ĝ(ηn−1) . . . Ĝ(ηn−r )â†

kâl . First, we observe that if
Â = ∑

i,j Ai,j â
†
i âj is a one-body operator:

eτÂâ
†
ke

−τ Â =
∑

i

[eτA]ikâ
†
i ,

eτÂâle
−τ Â =

∑
j

[e−τA]lj âj .
(A17)

As an immediate consequence:

eτÂâ
†
kâl =

∑
ij

[eτA]ik â
†
i âj [e−τA]lj eτÂ (A18)

showing that the exponential of a one-body operator can be
moved to the right of a product â

†
kâl at the cost of introduc-

ing the matrix eτA and its inverse. Iterated application of for-
mula (A18) to the operator product Ĝ(ηn−1) . . . Ĝ(ηn−r )â†

kâl

yields

Ĝ(ηn−1) . . . Ĝ(ηn−r )â†
kâl

=
∑
ij

[eA(ηn−r ) . . . eA(ηn−1)]ik[e−A(ηn−1) . . . e−A(ηn−r )]lj

× â
†
i âj Ĝ(ηn−1) . . . Ĝ(ηn−r ) (A19)
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and justifies the last passage of Eq. (22). To obtain (23) we
observe, as in the backpropagation technique, that

FÂ,B̂(rδτ ) 	 1

N

1

〈�T |e−(m+n−r)δτ(Ĥ−ε0)|�T 〉
· 〈�T |e−mδτ(Ĥ−ε0)Âe−rδτ(Ĥ−ε0)

× B̂e−(n−r)δτ(Ĥ−ε0)|�T 〉; (A20)

notice that, unlike in (17), at the denominator of the previous
equation only m + n − r integrations over auxiliary fields
configurations are involved. Expressing all imaginary time
propagators appearing in (A20) with (A8), recalling (22),
and applying the importance sampling transformation to both
numerator and denominator of the previous equation lead to

〈�T |e−(m+n−r)δτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(ηn)dg(ηn−r ) . . . dg(η0)

×〈�T |
m+n−1∏

i=n

Ĝ(ηi)
n−r−1∏

i=0

Ĝ(ηi)|�T 〉, (A21)

〈�T |e−mδτ(Ĥ−ε0)Âe−rδτ(Ĥ−ε0)B̂e−nδτ(Ĥ−ε0)|�T 〉

=
∑
ijkl

Bkl

∫
dg(ηm+n−1) . . . dg(η0)

×〈�T |
m+n−1∏

i=n

Ĝ(ηi)Ââ
†
i âj

n−1∏
i=0

Ĝ(ηi)|�T 〉

×D(ηn−1 . . . ηn−r )ikD−1(ηn−1 . . . ηn−r )lj . (A22)

Further application of the importance sampling transforma-
tion and of identity (A10) yields

〈�T |e−(m+n−r)δτ(Ĥ−ε0)|�T 〉

=
∫

dg(ηm+n−1) . . . dg(ηn)dg(ηn−r ) . . . dg(η0)

×〈�T |e−mδτ(Ĥ−ε0)Âe−rδτ(Ĥ−ε0)B̂e−nδτ(Ĥ−ε0)|�T 〉
= W[ηm+n−1, ξm+n−1 . . . ηn, ξnηn−r , ξn−r . . . η0, ξ 0]

×〈�T |e−mδτ(Ĥ−ε0)Âe−rδτ(Ĥ−ε0)B̂e−nδτ(Ĥ−ε0)|�T 〉
(A23)

expanding the propagators involved in (A23) we find

〈�T |e−(m+n−r)δτ(Ĥ−ε0)|�T 〉

=
∑
ijkl

Bkl

∫
dg(ηm+n−1) . . . dg(η0)

×W[ηm+n−1, ξm+n−1 . . . η0, ξ 0]

× 〈�T | ∏m+n−1
i=n Ĝ(ηi −ξ i)Ââ

†
i âj

∏n−1
i=0 Ĝ(ηi −ξ i)|�T 〉

〈�T | ∏m+n−1
i=0 Ĝ(ηi − ξ i)|�T 〉

×D(ηn−1 − ξn−1 . . . ηn−r − ξn−r )ik

×D−1(ηn−1 − ξn−1 . . . ηn−r − ξn−r )lj (A24)

an estimator for which is precisely (23). Notice that the
numerator (A24) of the estimator (A20) involves an integra-
tion over n + m auxiliary fields configurations, whereas the
denominator (A23) involves an integration over n + m − r
auxiliary fields configurations. Due to this circumstance, the
weights W

(w)
m+n appearing in the numerator of (23) coincide

with those appearing in (18), whereas at the denominator
other weights W

(w)
m+n−r appear, which are constructed with a

slightly modified recursion relation:

W
(w)
k+1 =

{
W

(w)
k if n − r ≤ k ≤ n − 1

W
(w)
k I

[
η

(w)
k , ξ

(w)
k ;

∣∣�(w)
k

〉]
otherwise

.

(A25)

APPENDIX B: ITCFs FOR THE IDEAL FERMI GAS

In the case of a noninteracting system, the ITCF Fq(τ )
takes the form

Fq(τ ) = 1

N
〈�0|ρ̂q(τ )ρ̂−q |�0〉

= 1

N

∑
p, p′

∑
σσ ′

〈�0|â†
p−q,σ (τ )â p,σ (τ )â†

p′+q,σ ′ â p′,σ ′ |�0〉.

(B1)

For a spin polarized system, using Heisenberg representation
and Wick’s theorem, formula (B1) can be reduced to

Fq(τ ) = 1

N

∑
p

e−τ (ε p−ε p−q ) �(kF − | p − q|) �(| p| − kF ).

(B2)
Numeric evaluation of (B2) yields Fq(τ ). For N↑ = 5, N↓
= 0, rs = 1, and q = 2π

L
(1, 0) the nonvanishing contribu-

tions to (B2) come from p = 2π
L

(1, 0), 2π
L

(0, 1), 2π
L

(0,−1).
Consequently,

Fq(τ ) = e− 6π
5 τ

5
+ 2e− 2π

5 τ

5
. (B3)
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