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Abstract

In this thesis, we develop an extension to the Constrained Path Monte Carlo method to
calculate the imaginary-time Green’s function in the one-band one-dimensional Hubbard
model. The results of the Monte Carlo calculations agree very well with exact results (for
systems where exact results are available). We then use the calculated Green’s functions to
probe the magnetic ordering of a large system beyond the reach of exact calculations.





Introduction

The strong correlation problem

The accurate prediction of material properties requires robust and reliable calculations
at the microscopic level. At this level, the behavior of particles (specifically electrons in this
thesis) is governed by the many-body Schrödinger equation. Given a potential (rules governing
how particles interact with each other and their surroundings), this partial differential equation
describes how the quantum state of a physical system changes with time. It plays a role similar
to Newton’s second law in classical mechanics which relates force to mass and acceleration.
Despite the Schrödinger equation’s simplicity, we only know its analytical solutions in a
small number of cases: particles in an infinitely-deep potential well, in a spring-like harmonic
potential and so on. Beyond these simple models, we have to resort to numerical methods.

According to Bajdich and Mitas [1], there are four fundamental challenges to the quantum
many-body problem. The first challenge is the large number of particles in a typical system
of interest: a moderate size solid contains on the order of 1023 quantum particles. For
systems containing a small enough number of particles, we can use exact numerical methods,
such as exact diagonalization [2]. However, these methods are limited by their exponential
computational complexity: if N is the number of particles in a system, the time taken to
compute some property is proportional to eN . Algorithms with exponential complexity are
considered computationally prohibitive except for small systems.

To circumvent this exponential scaling, early quantum mechanical studies of large systems
rely on simpler independent-particle methods, known as “mean-field” methods. An example
is the Hartree-Fock method [3, pp. 39-230]. This method assumes that electrons in a solid
feel an “average” effective potential caused by other surrounding nuclei and electrons, and
that the true potential does not deviate too far from this average potential. By replacing
the true many-body interactions between electrons with this average potential, the method
reduces a many-electron problem to a one-electron problem that can be solved more easily.

The second challenge comes from quantum interactions (or “correlations”) between
particles. These interactions create novel electronic and magnetic properties in strongly
correlated materials i.e. those in which the behavior of electrons cannot be described in terms
of non-interacting entities. These materials include [4] high-temperature superconductors
(zero resistance at unusually high temperatures), heavy-fermion metals (mobile electrons
with effective mass thousands of times that of normal electrons), colossal magnetoresistance
(great sensitivity of resistance to small changes in an applied magnetic field) and so on.
Strongly-correlated systems is one of the most exciting areas of modern condensed matter
physics. Hartree-Fock-like methods do not treat correlation well because all electrons are
subject to the same potential. Density functional theory, a widely used and successful class
of methods, partly overcomes this problem by estimating the many-body correlation with
an exchange correlation functional.
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The third challenge is the high accuracy required for predictions that are comparable to
experiments. In strongly-correlated materials, even small errors in the electronic correlation
can lead to crucial and qualitative differences in physical properties. Despite the success of
density functional theory, its treatment of electronic correlation is entirely approximate [5, p.
1]. Thus, alternatives to independent-particle theories are needed, among which quantum
Monte Carlo (QMC) is a promising candidate.

Unlike other methods, QMC [5] is stochastic in nature i.e its results have associated
statistical uncertainties. However, these uncertainties are inversely proportional to the square
root of the number of simulations and, more importantly, independent of the number of
particles. By using stochastic sampling instead of explicit integration over phase space (which
scales exponentially), QMC has computational costs that scale polynomially (about N3) with
the number of particles N and enables computation of very large systems. The N -dependence,
in the case of CPMC, comes from the complexity of regular matrix operations. Due to the
nature of Monte Carlo integration, QMC methods have exceptional potential for parallel
scaling which enables them to easily take advantage of current advances in high-performance
computing like general-purpose computing on GPUs (graphics processing units).

The fourth challenge comes from the required symmetry of the solution as dictated by
quantum mechanics, a fundamental departure from classical systems. For example, a solution
for electrons has to be antisymmetric i.e. if we switch the labels of two electrons in the
system, the solution must negate itself. This antisymmetry requirement causes the “fermion
sign problem” [6] that afflicts all fermionic QMC methods. Fortunately, CPMC is able to
control this problem with the constrained path approximation, discussed in Section 3.9.

The Hubbard model

Although the ideal goal of condensed matter physics is the treatment of electrons in a
solid, the full interaction problem between all electrons and all ions is too difficult to tackle
directly. Nevertheless, much insight can be gained from the analysis of simplified models
that retain the essential physics, one of which is the Hubbard model, which was first written
down by John Hubbard in 1963 [7].

The first simplification in the Hubbard model is the Born-Oppenheimer approximation
(also used widely in quantum chemistry). Because the nuclei in a solid are a few thousand
times heavier than electrons, we can think of the nuclei as forming a static lattice. One
can also assume that the electrons only have short-range interactions. This is often a good
approximation in practice because the screening by electrons is enough to render long range
interaction negligible.

These two assumptions give rise to the Hubbard model to describe electron interactions
on a lattice. There are two contributions to the energy in the model. The kinetic energy
term allows electrons to move between localized states on adjacent sites of the lattice. These
electrons interact in the form of a Coulomb repulsion introduced by the potential energy term
when they meet on the same lattice site (due to the Pauli exclusion principle, there can be at
most two electrons on a lattice site). These two terms compete because the kinetic part favors
electrons being as mobile as possible while the repulsive potential part encourages electrons
to stay apart from each other, i.e. localized on different atomic sites. This competition is at
the heart of the electronic many-body problem.

The Hubbard model is the simplest model for many-electron interactions, an important
motivation for its studies. By varying the strength of the repulsion, we have a continuous
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regime from weak to strong correlation. It has been used in attempts to describe [8, p. 5]
the electronic properties of solids with narrow bands; band magnetism in iron, cobalt, nickel;
the Mott metal-insulator transition; and electronic properties of high-temperature cuprate
superconductors in the normal state.

Despite its apparent simplicity, no consistent treatment of the model exists for lattices in
more than one dimension. Fortunately in one-dimensional Hubbard lattices, many properties
can be calculated exactly by a number of methods. For example, in 1968, just a few years
after Hubbard came up with the model,1 an analytic formula for the ground state energy
was found by Lieb and Wu [9] using the Bethe ansatz.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) is a class of stochastic algorithms that use the Monte Carlo
technique to compute properties of quantum systems. The stochasticity means that instead
of giving a definite numerical result, QMC calculations give results that have associated
statistical uncertainties that can be reduced algebraically with more computer run time. There
are many QMC algorithms, which can be classified based on whether they work in ground
state (zero-temperature) or finite-temperature; are variational or projective and if projective,

the projection operator used (1 − τĤ, 1

1−τ(ET−Ĥ)
or e−τ(Ĥ−ET)); work in continuum or

lattice; and whether they take place in first quantization or second quantization. The terms
highlighted in red are the characteristics of CPMC.

We will now provide a brief literature review leading to the work in this thesis. The
technique of Markov chain Monte Carlo, which is used by CPMC and most QMC methods,
can be traced back to the invention of the Metropolis algorithm2 by Metropolis et al. [11]
in 1953. This algorithm allows us to sample any probability distribution function without
knowing its normalization by generating a Markov chain whose stationary distribution obeys
the desired distribution function. This technique gave rise to Variational Monte Carlo (VMC),
the first QMC method, by McMillan [12] in 1965. VMC uses the Metropolis algorithm to
sample the squared magnitude of a trial wave function (which is the probability of finding an
electron at a point in space) and then evaluates the expectation value for some observable
with that trial wave function. Because of the large number of particle coordinates, Monte
Carlo integration is much more efficient than conventional quadrature e.g. summing the
areas of rectangular boxes under a curve.

Nevertheless, the accuracy of VMC depends entirely on the accuracy of the trial wave
function. Projective Monte Carlo methods, including CPMC, overcome this limitation by
using a projection technique to enhance the ground-state component of a starting trial
wave function. A very popular projective Monte Carlo method is the Diffusion Monte Carlo
(DMC) method, pioneered by Anderson [13] in 1975. This ground state method works in
configuration space and uses an open-ended branching random walk in imaginary time to
sample the ground state. The transition probability for this random walk is constructed by
invoking the similarity between the Schrödinger equation in imaginary time and the diffusion
equation with a source term.

1 In fact, the title of the seminal paper by Lieb and Wu [9] referred to the model only as “the short-range,
one-band model in one dimension” instead of “the Hubbard model,” possibly because the name Hubbard has
yet to be widely associated with the model at that time.

2 The Metropolis (also known as M(RT)2) algorithm was named one of the top 10 algorithms of the 20th
century by The Society for Industrial and Applied Mathematics [10] in 2000.
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All the aforementioned methods work in first quantization and now we will introduce
QMC methods that work in second quantization. The field of auxiliary-field quantum Monte
Carlo (AFQMC)—the introduction of auxiliary fields through the Hubbard-Stratonovich
transformation to convert an interacting system into many non-interacting systems—was
pioneered in 1981 by Blankenbecler et al. [14] and Scalapino and Sugar [15] with a finite-
temperature algorithm and was followed up in 1986 by Sugiyama and Koonin [16] with
a zero-temperature (i.e. ground state) algorithm. Between these two developments, in
1983, Hirsch [17] invented a discrete form of the Hubbard-Stratonovich transformation for
the Hubbard Hamiltonian. This transformation became very popular in latter AFQMC
calculations of the Hubbard model and Hirsch [18] himself used this transformation to study
many physical properties of the Hubbard model at finite temperature. All these methods
use the Metropolis formalism.

However, all these early pioneers had to contend with the fermion sign problem. This
problem arises because of the antisymmetry of fermionic wave functions and causes large
statistical errors at low temperature, large imaginary times or strong correlations, precisely the
regimes that yield interesting physics. In a very insightful paper in 1991, Fahy and Hamann
[19] showed how the introduction of auxiliary fields through the Hubbard-Stratonovich
transformation sets up a diffusion equation (with branching and drift) on the Grassmann
manifold of normalized Slater determinants. Based on this observation, they proposed [20]
the positive projection approximation to reduce or eliminate the sign problem. However, this
approximation is very computationally expensive when integrated into existing AFQMC
methods because they all use the Metropolis formalism.

The ground-state CPMC method was pioneered by Zhang et al. [6] in 1997. It combines
techniques from DMC (open-ended branching random walk in imaginary time, importance
sampling) and Metropolis AFQMC (Hubbard-Stratonovich transformation, Slater determi-
nants) to do ground state projection. The major breakthrough here is that the branching
random walk allows for a very easy implementation of the aforementioned positive projection
approximation by Fahy and Hamann [20], now called the constrained path approximation.
In 1999, Zhang [21] extended CPMC to treat systems at finite-temperature. Subsequently in
2003, Zhang and Krakauer [22] extended CPMC again to treat any interactions. This most
general formulation of CPMC is called the phaseless AFQMC method.

In 2001, Feldbacher and Assaad [23] invented an elegant and efficient way to calculate
the unequal-time Green’s function in Metropolis AFQMC. Earlier this year, Motta et al. [24]
used the phaseless AFQMC and the aforementioned method by Feldbacher and Assaad [23] to
calculate the unequal-time Green’s function of the jellium model. This last paper comes the
closest to the objective of this thesis: to develop an extension to the constrained path
Monte Carlo method by incorporating the method by Feldbacher and Assaad
[23] into the back-propagation technique by Zhang et al. [6] in order to calculate
the unequal-time Green’s function3 in the one-band one-dimensional Hubbard
model. The longer-term goal is to perform these calculations in the two-dimensional Hubbard
model where there is no analytic solution. As the starting point for implementation, we will
use CPMC-Lab, a MATLAB package developed in Nguyen et al. [25] that can perform
ground-state CPMC calculations to find the ground state energy of the Hubbard model in
up to three dimensions.

3 In this thesis, we use the term “imaginary-time Green’s function” to include both the equal-time and
unequal-time Green’s function. The equal-time Green’s function has already been calculated in CPMC using
the back-propagation technique by Zhang et al. [6].
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Layout of the thesis

This thesis is organized as follows. In chapter 1, we introduce the formalism of second
quantization, which is used extensively in many-body quantum theory. We study purely
non-interacting electron systems and then non-interacting systems but subject to an external
potential. These systems are easy to solve and will serve as a testbed to help us understand the
numerical behavior of the extension to the CPMC method that we will develop in chapter 3.
They are also used to check the results of the non-interacting case of the algorithm developed
in chapter 2.

In chapter 2, we will introduce the Hamiltonian of the one-band one-dimensional Hubbard
model, the principal subject of this thesis. We will then discuss a number of useful properties
of this Hamiltonian and state the exact diagonalization (ED) algorithm to obtain the
unequal-time Green’s function of the model exactly.

In chapter 3, we describe the existing CPMC algorithm and the extension we have
developed in detail.

Finally, in chapter 4, we discuss the applications of the imaginary-time Green’s function.
We want to emphasize that the appendices constitute an important part of this thesis

and could have functioned perfectly as parts of the main body. We have elected to put them
in appendices in order to not interrupt the flow of ideas in the main body. They mostly
contain proofs of theorems or properties that are referred to in the main body. Because many
of these theorems and properties are standard results, they are routinely stated without
proofs in the literature, which might frustrate a beginner entering the field. This thesis hopes
to remedy this situation, to some extent.

Although this thesis is about “quantum Monte Carlo,” we will spend most of the time
developing the “quantum” part, that is, writing the quantum mechanical quantities we wish
to compute in a form that is amenable to a Monte Carlo solution and then showing the
Monte Carlo algorithms for such computations. We will not spend a lot time on the “Monte
Carlo” part because there are many excellent books that discuss the technique, such as Kalos
and Whitlock [26].

The most up-to-date version of this thesis (in PDF format) can always be obtained from
the following website:

www.huy.dev/Reed-thesis.

For all inquiries, questions, comments and errors, please contact the author at the following
email address:

me@huy.dev.

All journal articles in the bibliography are hyperlinked and can be accessed by clicking on
the journal citations.

https://www.huy.dev/Reed-thesis
mailto:me@huy.dev




Chapter 1

Non-interacting systems

In this chapter, we will introduce the formalism of second quantization, which is used
extensively in many-body quantum theory. After that, we will derive expressions for the
equal- and unequal-time Green’s functions for purely non-interacting electron systems and
then non-interacting systems but subject to an external potential. These systems are easy
to solve and will serve as a testbed to help us understand the numerical behavior of the
extension to the CPMC method that we will develop in chapter 3.

1.1 Second quantization

Quantum mechanics of a single particle is usually formulated in terms of the position
operator x̂ and momentum operator p̂. All physical observables can be expressed in terms of
x̂ and p̂ and a natural representation for quantum mechanics, the coordinate representation,
is defined in terms of eigenfunctions of x̂.

Similarly, the quantum mechanics of many identical particles is described by ‘second
quantization’ which is formulated in terms of creation and annihilation operators. All
operators of interest can be expressed in terms of these creation and annihilation operators.
This section has been adapted from Negele and Orland [27, ch. 1].

1.1.1 System of identical particles

The Hilbert space of states for a system ofN identical particles is the spaceHN of complex
square integrable functions ΨN ( #”r 1, . . . ,

#”r N ) which represents the probability amplitude
of finding particles at one particular configuration of the N positions #”r 1, . . . ,

#”r N . HN is
simply the N -th tensor product of the single particle Hilbert space:

HN = H⊗H⊗ · · · ⊗ H . (1.1)

If {|α〉} is an orthonormal basis of H, the canonical basis of HN is constructed form the
tensor products

|α1 . . . αN ) ≡ |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉 . (1.2)

Note that these basis states of HN utilize parentheses in the ket symbol. The wave functions
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associated with these basis states are

ψα1...αN ( #”r 1, . . . ,
#”r N ) = ( #”r 1 . . .

#”r N |α1 . . . αN ) (1.3)

=
(
〈 #”r 1| ⊗ · · · ⊗ 〈 #”r N |

) (
|α1〉 ⊗ · · · ⊗ |αN 〉

)
(1.4)

= φα1( #”r 1)φα2( #”r 2) . . . φαN ( #”r N ) . (1.5)

The inner product of two vectors in this basis obeys the usual rules for tensor products:

(α1 . . . αN |α′1 . . . α′N ) =
(
〈α1| ⊗ · · · ⊗ 〈αN |

)(
|α′1〉 ⊗ · · · ⊗ |α′N 〉

)
(1.6)

= 〈α1|α′1〉 . . . 〈αN |α′N 〉 (1.7)

and the completeness of this basis follows from the completeness of the {|α〉} basis:∑
α1,...,αN

|α1 . . . αN ) (α1 . . . αN | = 1 , (1.8)

where 1 is the unit operator in HN . From Eqs. (1.5) and (1.8), we can see that the space
HN is generated by linear combinations of products of single-particle wave functions.

So far the symmetry property of the wave functions have not been considered in the
construction of HN . However, the spin statistics theorem requires that wave functions for
fermions be totally antisymmetric under particle exchange. That is, if P is a permutation of
the set (1, 2, . . . , N) then a fermionic wave function satisfies

ψ( #”r P1, . . . ,
#”r PN ) = (−1)P ψ( #”r 1, . . . ,

#”r N ) (1.9)

where (−1)P denotes the parity of the permutation P . To take symmetry into account,
we define the antisymmetrization operator P that, when acting on a many-particle wave
function, creates a linear combination out of all possible permutations of the particle labels
and gives each term an appropriate sign so as to make the combination antisymmetric under
exchange of particle labels.

PΨ( #”r 1, . . . ,
#”r N ) =

1

N !

∑
P

(−1)PΨ( #”r P1, . . . ,
#”r PN ) (1.10)

For example, for two fermions

Pψ( #”r 1,
#”r 2) =

1

2
[ψ( #”r 1,

#”r 2)− ψ( #”r 2,
#”r 1)] . (1.11)

The antisymmetry requirement restricts the Hilbert space of N -particle fermionic wave
functions to a smaller space FN . Since P is a projector [27, p.5], FN is in fact the projection
of the full Hilbert space HN under P:

FN = P HN . (1.12)

Using the operator P, a system of fermions with one particle in state α1, one particle in
state α2 and so on is represented as follows:

|α1 . . . αN 〉 ≡
√
N !P |α1 . . . αN ) (1.13)

=
1√
N !

∑
P

(−1)P |αP1〉 ⊗ · · · ⊗ |αPN 〉 . (1.14)
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As expected, these antisymmetrized states obey the Pauli exclusion principle. Suppose two
states are identical |α1〉 = |α2〉 = |α〉 then

|α1α2α3 . . . αN 〉 =
√
N !P |α1α2α3 . . . αN ) (1.15)

= −
√
N !P |α2α1α3 . . . αN ) swapping changes the parity cf. Eq. (1.14)

(1.16)

= 0 (1.17)

and no acceptable many-fermion state exists in this case.
From Eq. (1.12), it follows that if |α1 . . . αN ) is a basis of the Hilbert space HN then

P |α1 . . . αN ) spans FN . Furthermore, if the basis |α〉 is orthogonal in H then the basis
|α1 . . . αN ) is orthogonal in HN and the basis |α1 . . . αN 〉 is orthogonal in FN . To see why,
we evaluate the inner product of two such antisymmetric states.

〈α′1 . . . α′N |α1 . . . αN 〉 = N ! (α′1 . . . α
′
N |P2|α1 . . . αN ) (1.18)

= N ! (α′1 . . . α
′
N |P|α1 . . . αN ) since P is a projector (1.19)

=
∑
P

(−1)P 〈α′1|αP1〉 . . . 〈α′N |αPN 〉 (1.20)

Because of the orthogonality of the basis |α〉, the states |α′i〉 must be a permutation of
the states |αi〉. Furthermore, there is at most one particle per state |αi〉, no two identical
states can be present in the set {α1, . . . , αN}. Thus there is at most one permutation P that
transforms α1, . . . , αN into α′1, . . . , α

′
N and the sum in Eq. (1.20) reduces to a single term.

Assuming the states |αi〉 are normalized, we obtain:

〈α′1 . . . α′N |α1 . . . αN 〉 = (−1)P , (1.21)

which immediately gives us the norm of |α1 . . . αN 〉:

〈α1 . . . αN |α1 . . . αN 〉 = 1 . (1.22)

So these antisymmetric states are already normalized! Thus the completeness relation in FN
is

1

N !

∑
α1,...,αN

|α1 . . . αN 〉 〈α1 . . . αN | = 1 . (1.23)

The overlap between a simple tensor product |β1 . . . βN ) and the antisymmetrized state
|α1 . . . αN 〉 is

(β1 . . . βN |α1 . . . αN 〉 =
1√
N !

∑
P

(−1)P 〈β1|αP1〉 〈β2|αP2〉 . . . 〈βN |αPN 〉 (1.24)

=
1√
N !

Det (〈βi|αj〉) (1.25)

where the notation Det (〈βi|αj〉) denotes the determinant of a matrix whose ij-th entries are
〈βi|αj〉. If we let (β1 . . . βN | = ( #”r 1 . . .

#”r N | in Eq. (1.24), we obtain the relationship between
the normalized antisymmetric states |α1 . . . αN 〉 and the single-particle wave functions
φαi(

#”x j):

Ψβ1,...,βN ( #”r 1, . . . ,
#”r N ) = ( #”r 1 . . .

#”r N |α1 . . . αN 〉 (1.26)

Ψβ1,...,βN ( #”r 1, . . . ,
#”r N ) =

1√
N !

Det (φαi(
#”r j)) (1.27)
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where we call Det (φαi(
#”r j)) a Slater determinant. These Slater determinants form a basis

for FN in coordinate representation.
The overlap of two antisymmetric fermion states is

〈β1 . . . βN |α1 . . . αN 〉 = Det(〈βi|αj〉) . (1.28)

1.1.2 Creation and annihilation operators

Now we introduce creation and annihilation operators, which provide a convenient repre-
sentation of the many-body states in Section 1.1.1 and many-body operators in Section 1.1.3.
For each single-particle state |λ〉 of the single-particle space H, we define a creation op-

erator a†λ by its action on any antisymmetrized state |λ1 . . . λN 〉 of FN where {|λi〉} is an
orthonormal basis as follows:

a†λ |λ1 . . . λN 〉 =

{
|λλ1 . . . λN 〉 if the state |λ〉 is not present in |λ1 . . . λN 〉
0 if the state |λ〉 is present in |λ1 . . . λN 〉

(1.29)

As the name suggests, the operator a†λ adds a particle in state |λ〉 to the state on which it
operates and antisymmetrizes the new state. In addition to the many-particle states we have
used so far, it is useful to define a state with zero particles or vacuum state, denoted |0〉.
Note that the vacuum state |0〉, a state with no particles, is different from the zero of the

Hilbert space. A natural extension of Eq. (1.29) is the definition that a†λ creates a particle in
the state |λ〉 when acting on the vacuum |0〉:

a†λ |0〉 = |λ〉 . (1.30)

The creation operators a†λ do not operate within one space FN but rather operate from a
N -particle space FN to a (N + 1)-particle space FN+1. The Fock space is defined as the
direct sum of the Fermion spaces

F = F0 ⊕F1 ⊕F2 ⊕ · · · = ⊕∞n=0Fn (1.31)

where by definition
F0 = |0〉 (1.32)

and
F1 = H . (1.33)

Any basis vector |λ1 . . . λN 〉 may be generated by repeated action of the creation operator
on the vacuum |0〉.

|λ1 . . . λN 〉 = a†λ1
a†λ2

. . . a†λN |0〉 (1.34)

A general state |φ〉 of the Fock space is a linear combination of states with any number of
particles. For example, the state

|φ〉 =
1

2
|0〉+

1√
2
|λ〉+

1

2
|λµ〉 (1.35)

represents a system of particles in which there is probability 1/4 for having no particles,
probability 1/2 for having one particle in state |λ〉 and a probability 1/4 for having two
particles in state |λµ〉. The completeness relation in Fock space is

1 = |0〉 〈0|+
∞∑
N=1

1

N !

∑
λ1...λN

|λ1 . . . λN 〉 〈λ1 . . . λN | . (1.36)
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The antisymmetry of the many-fermion states impose anticommutation relations between
the creation operators. For any state |λ1 . . . λN 〉 and any single particle states |λ〉 and |µ〉,
we obtain

a†λa
†
µ |λ1 . . . λN 〉 = |λµλ1 . . . λN 〉 (1.37)

= − |µλλ1 . . . λN 〉 antisymmetry of wave function (1.38)

= −a†µa
†
λ |λ1 . . . λN 〉 . (1.39)

Since the above equation holds for any state, the creation operators satisfy the following
equation:

a†λa
†
µ + a†µa

†
λ = 0 . (1.40)

Defining the anticommutator of a†λ and a†µ as

{a†λ, a
†
µ} = a†λa

†
µ + a†µa

†
λ (1.41)

we can rewrite Eq. (1.40) in a more compact form:

{a†λ, a
†
µ} = 0 . (1.42)

Since the operators a†λ are not self-adjoint, we define the annihilation operators aλ as the

adjoints of the creation operators a†λ. The anticommutation relation of annihilation operators
follow from adjoint of Eq. (1.40):

aλaµ + aµaλ ≡ {aλ, aµ} = 0 (1.43)

The action of aλ on a state can be shown [27, p. 13-4] to be

aλ |β1 . . . βn〉 =

{
(−1)i−1 |β1 . . . β̂λβn〉 if |βλ〉 is occupied

0 if |βλ〉 is unoccupied
(1.44)

where i is the number of single-particle states before βλ and the notation β̂λ means βλ has
been removed. As expected, if there are no particles in state |λ〉 to be annihilated, aλ yields
zero.

It is also useful to define the particle number operator

n̂α = a†αaα . (1.45)

Using Eqs. (1.29) and (1.44), we observe that the action of n̂α on a state |φ〉 is to count the
number of particles in state |α〉:

n̂α |α1 . . . αN 〉 = a†αaα |a1 . . . aN 〉 (1.46)

=
N∑
i=1

(−1)i−1δααia
†
α |α1 . . . α̂i . . . αN 〉 (1.47)

=

(
N∑
i=1

δααi

)
|a1 . . . αi . . . aN 〉 , (1.48)

where
∑N

i=1 δααi yields the number of particles in state |α〉 in |a1 . . . aN 〉.



12 Chapter 1. Non-interacting systems

1.1.3 Many-body operators

We now consider many-body operators in the canonical basis of HN in Eq. (1.2). If Ô is
any operator in FN , the indistinguishability of fermions implies that Ô is invariant under
any permutation of the particles. Thus, for any state and any permutation P :

(βP1 . . . βPN |Ô|β′P1 . . . β
′
PN ) = (β1 . . . βN |Ô|β′1 . . . β′N ) . (1.49)

An operator Û is a one-body operator if the action of Û on a state |α1 . . . αN 〉 of N
particles is the sum of the action of Û on each particle

Û |α1 . . . αN 〉 =
N∑
i=1

Ûi |α1 . . . αN 〉 , (1.50)

where the operator Ûi only acts on the i-th particle. It can be proved [27, p. 9] that the
action of a one-body operator is entirely defined by its matrix elements 〈α|Û |β〉 in the
single-particle Hilbert space H. We can express any one-body operator in terms of creation
and annihilation operators:

Û =
∑
α,β

〈α|Û |β〉 a†αaβ (1.51)

Similarly, an operator V̂ is a two-body operator if the action of V̂ on a state |α1 . . . αN 〉
of N particles is the sum of the action of V̂ on all distinct pairs of particles.

V̂ |α1 . . . αN 〉 =
1

2

∑
i 6=j

V̂ij |α1 . . . αN 〉 (1.52)

where V̂ij only acts on particles i and j. The symmetry requirement in Eq. (1.49) requires

that V̂ij = V̂ji. The action of a two-body operator is entirely defined by its matrix elements

〈λµ|V̂ |νρ〉 in the Hilbert space Ĥ2 of two-particle systems. Any two-body operator can be
expressed in terms of creation and annihilation operators:

V̂ =
∑
λµνρ

〈λµ|V̂ |νρ〉 a†λa
†
µaρaν . (1.53)

Do note the reversed order of ν and ρ in the matrix element compared to that in the
annihilation operators.

To recap, in this section, we have given an overview of the notation of second quantization
and how that relates to the familiar “first quantization” notation used in introductory
quantum mechanics. From this point on, we will use c†i and ci to denote creation and

annihilation operators instead of a†i and ai.

1.2 Non-interacting electrons

We will now use the second quantized notation developed in the previous section to study
non-interacting electrons. This should be familiar to readers who have taken introductory
quantum mechanics and should “ease” them into working with second quantization.

The non-interacting Hamiltonian represents the kinetic energy of electrons as they move
around a lattice

Ĥ = −t
∑
σ,〈i,j〉

c†iσcjσ . (1.54)
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where t is a parameter describing how easy it is for electrons to move between sites. The
notation 〈i, j〉 denotes nearest-neighbor hopping. We will only deal with one-dimensional
systems in this thesis.

Because the system is non-interacting, we can use the Fourier transform of the creation
and annihilation operators to diagonalize the Hamiltonian. We define the momentum-space
creation and annihilation operators to be:

c†kσ =
1√
N

∑
`

eik`c†`σ (1.55)

where k are restricted to have discrete values kn = 2πn
N because we impose periodic boundary

conditions (and tacitly set the lattice spacing to be 1). Thus, inverting Eq. (1.55):

c†`σ =
1√
N

∑
k

e−ik`c†kσ (1.56)

and the corresponding annihilation operator is

c`σ =
1√
N

∑
k

eik`ckσ . (1.57)

After the Fourier transform, the non-interacting Hamiltonian in Eq. (1.54) becomes

Ĥ = −t
∑
〈j`〉σ

c†jσc`σ (1.58)

= −t
∑
〈j`〉σ

[
1√
N

∑
k

e−ikjc†kσ

][
1√
N

∑
k′

eik′`ck′σ

]
Eqs. (1.56) and (1.57) (1.59)

= − t

N

∑
〈j`〉σ

∑
kk′

e−ikjeik′`c†kσck′σ (1.60)

= − t

N

∑
kk′σ

c†kσck′σ
∑
〈j`〉

(
e−ikjeik′`

)
. (1.61)

Because j and l have to be neighboring sites, j = `+ 1 or j = `− 1. Thus

Ĥ = − t

N

∑
kk′σ

c†kσck′σ
∑
`

[
e−ik(`+1)eik′` + e−ik(`−1)eik′`

]
(1.62)

= − t

N

∑
kk′σ

c†kσck′σ
∑
`

[
ei`(k′−k)e−ik + ei`(k′−k)eik

]
(1.63)

= −t
∑
kk′σ

c†kσck′σ

(
e−ik + eik

)[ 1

N

∑
`

ei`(k′−k)

]
(1.64)

= −t
∑
kk′σ

c†kσck′σ(2 cos k)δkk′ recognizing the Fourier transform of δ

(1.65)

= −2t
∑
kσ

(cos k)c†kσckσ (1.66)
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Figure 1.1: The dispersion relation for non-interacting electrons in Eq. (1.68). The solid
circles denote filled states (up to the Fermi level) and empty circles denote unfilled states.
The Fermi level shown here is arbitrary.

Thus, the non-interacting Hamiltonian in the momentum basis is

Ĥ ≡
∑
k

εkc
†
kσckσ (1.67)

where we have defined

εk ≡ −2t cos k . (1.68)

In this basis, the Hamiltonian matrix is diagonal

H =

ε1 · · · 0
...

. . .
...

0 · · · εN

 . (1.69)

We note that Eq. (1.68), as shown in Fig. 1.1, describes the dispersion relation for non-
interacting electrons if we require that electrons only move between adjacent nearest-
neighboring sites. Other forms of dispersion relations also exist. For example, the dispersion
relation for free electrons in continuum with ~ = me = 1 is

εk =
k2

2
. (1.70)

1.2.1 Equal-time Green’s function

We will now take the first step towards finding the unequal-time Green’s function by
studying a special case of it: the equal-time Green’s function. The operator appearing in the
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equal-time Green’s function is

cjσc
†
`σ =

(
1√
N

∑
k

eikjckσ

)(
1√
N

∑
k′

e−ik′`c†k′σ

)
(1.71)

=
1

N

∑
k,k′

eikje−ik′`ckσc
†
k′σ . (1.72)

The expectation for this operator in the ground-state is

〈Ψ0|cjσc†`σ|Ψ0〉 =
1

N

∑
k,k′

eikje−ik′` 〈Ψ0|ckσc†k′σ|Ψ0〉 . (1.73)

Using the commutation relations of the creation and annihilation operators and the normal-
ization of |Ψ0〉, we have

〈Ψ0|cjσc†`σ|Ψ0〉 =
1

N

∑
kk′

[
eikje−ik′`δkk′ − eikje−ik′` 〈Ψ0|c†k′σckσ|Ψ0〉

]
. (1.74)

Because |Ψ0〉 is occupied up to the Fermi level kF as shown in Fig. 1.1, the annihilation
operators ckσ with |k| > kF acting on |Ψ0〉 will yield zero because there are no states with
|k| > kF in |Ψ0〉.

〈Ψ0|cjσc†`σ|Ψ0〉 =
1

N

∑
k

eik(j−`) −
∑
|k|<kF

eik(j−`)

 (1.75)

=
1

N

∑
|k|>kF

eik(j−`) . (1.76)

Suppose the lattice is one dimensional with an odd number of sites N and odd number of
electrons Nσ with spin σ. Recall that the periodic boundary condition implies that kn = 2πn

N
where n ranges from −N−1

2 to N−1
2 i.e. the momentum states are symmetric about k = 0.

Since the Fermi level is at n = Nσ−1
2 , the k values of unoccupied momentum states satisfy

|n| ≥ Nσ+1
2 . Thus

〈Ψ0|cjσc†`σ|Ψ0〉 =
1

N

N−1
2∑

n=Nσ+1
2

[
ei 2πn

N
(j−`) + e−i 2πn

N
(j−`)

]
(1.77)

=
2

N

N−1
2∑

n=Nσ+1
2

cos

[
2πn

N
(j − `)

]
. (1.78)

This is the expression for the equal-time Green’s function in a non-interacting electron
system.
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1.2.2 Unequal-time Green’s function

The unequal-time Green’s function is a generalization of the equal-time Green’s function
we studied in the previous section. It is formed from the following operator

c`(τ)c†j (1.79)

where the creation and annihilation operators are in the Heisenberg picture i.e. they evolve
in time:

c`(t) = eiHtc`(0) e−iHt (1.80)

c†j(t) = eiHtc†j(0) e−iHt . (1.81)

Note that in real time, we have [c`(t)]
† = c†`(t).

Now let τ = it be the imaginary time. Then the operator for the unequal-time Green’s
function becomes c`(τ)c†j(0). In imaginary time, Eqs. (1.80) and (1.81) become

c`(τ) = eτĤc`(0) e−τĤ (1.82)

c†j(τ) = eτĤc†j(0) e−τĤ (1.83)

Note that in imaginary time, [c`(τ)]† 6= c†`(τ). From now on we will use the convention that
if an operator has no time attached to it, it is understood to be at time 0. The ground state
expectation value of the operator c`(τ)c†j is

〈c`(τ)c†j〉 = 〈Ψ0|eτĤc` e−τĤc†j |Ψ0〉 . (1.84)

Since |Ψ0〉 is the ground state, acting on the left with eτĤ gives

〈c`(τ)c†j〉 = 〈Ψ0|eτE0c` e−τĤc†j |Ψ0〉 (1.85)

and Fourier transforming c†j according to Eq. (1.56) gives

〈c`(τ)c†j〉 =

〈
Ψ0

∣∣∣∣∣ eτE0c` e−τĤ

(
1√
N

∑
k

e−ikjc†kσ

)∣∣∣∣∣Ψ0

〉
. (1.86)

Because |Ψ0〉 is the non-interacting ground state, it is filled up to the Fermi level kF. Thus
all creation operators below the Fermi level yield zero when acting on |Ψ0〉:

〈c`(τ)c†j〉 =
1√
N

〈
Ψ0

∣∣∣∣∣∣ eτE0c` e−τĤ
∑
k>kF

e−ikjc†kσ

∣∣∣∣∣∣Ψ0

〉
. (1.87)
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If we let ckσ for k > kF act on the ground state |Ψ0〉, the resulting state, which (for lack
of a better notation) we shall denote |Ψ0 + k〉, is the ground state plus a particle in the
momentum state k.

〈c`(τ)c†j〉 =
1√
N

〈
Ψ0

∣∣∣∣∣∣ eτE0c` e−τĤ
∑
k>kF

e−ikj

∣∣∣∣∣∣Ψ0 + k

〉
(1.88)

=
1√
N

〈
Ψ0

∣∣∣∣∣∣ eτE0c`
∑
k>kF

e−ikje−τĤ

∣∣∣∣∣∣Ψ0 + k

〉
. e−ikj is a scalar

(1.89)

Because the non-interacting Hamiltonian is diagonal in the momentum basis from Eq. (1.67),
the energy of |Ψ0 + k〉 is that of the ground state plus εk, the energy of the momentum state

k. Thus acting on |Ψ0 + k〉 with e−τĤ gives

〈c`(τ)c†j〉 =
1√
N

〈
Ψ0

∣∣∣∣∣∣ eτE0c`
∑
k>kF

e−ikje−τ(E0+εk)

∣∣∣∣∣∣Ψ0 + k

〉
(1.90)

=
1√
N

〈
Ψ0

∣∣∣∣∣∣ c`
∑
k>kF

e−ikjeτE0e−τ(E0+εk)

∣∣∣∣∣∣Ψ0 + k

〉
(1.91)

=
1√
N

〈
Ψ0

∣∣∣∣∣∣ c`
∑
k>kF

e−ikje−τεk

∣∣∣∣∣∣Ψ0 + k

〉
. (1.92)

Fourier transforming c` yields:

〈c`(τ)c†j〉 =
1√
N

〈
Ψ0

∣∣∣∣∣∣
(

1√
N

∑
k′

eik′`ck′σ

) ∑
k>kF

e−ikje−τεk

∣∣∣∣∣∣Ψ0 + k

〉
(1.93)

=
1

N

〈
Ψ0

∣∣∣∣∣∣
∑
k>kF

∑
k′

eik′`e−ikje−τεkck′σ

∣∣∣∣∣∣Ψ0 + k

〉
. (1.94)

Once again, because |Ψ0 + k〉 is the ground state plus a particle in the momentum state k,
ck′σ must satisfy either |k| ≤ kF or k′ = k. Since k already satisfy |k| > kF, it must be that
k = k′. Thus

〈c`(τ)c†j〉 =
1

N

〈
Ψ0

∣∣∣∣∣∣
∑
k>kF

eik`e−ikje−τεkckσ

∣∣∣∣∣∣Ψ0 + k

〉
(1.95)

=
1

N

〈
Ψ0

∣∣∣∣∣∣
∑
k>kF

eik(`−j)e−τεk

∣∣∣∣∣∣Ψ0

〉
(1.96)

=
1

N

∑
k>kF

eik(`−j)e−τεk 〈Ψ0|Ψ0〉 (1.97)

〈c`(τ)c†j〉 =
1

N

∑
k>kF

eik(`−j)e−τεk (1.98)
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where εk is defined as in Eq. (1.68):

εk = −2t cos k . (1.99)

Assuming periodic boundary condition and an odd number of sites N and spin-σ electrons
Nσ, by the same reasoning that leads to Eq. (1.77), Eq. (1.98) becomes

〈c`(τ)c†j〉 =
2

N

N−1
2∑

n=Nσ+1
2

cos

[
2πn

N
(j − `)

]
exp

[
2τt cos

(
2πn

N

)]
(1.100)

assuming that the ground state is normalized. Note that this reduces to the equal-time
Green’s function in Eq. (1.76) when τ = 0 as expected.

1.2.3 Non-interacting Hubbard model in an external potential

We will now increase the complexity of the non-interacting system in the previous sections
by including an external potential (Note that the electrons still do not directly interact
with each other). This is useful because in chapter 3, we will use the Hubbard-Stratonovich
transformation to break up an interacting systems into smaller non-interacting systems
living in external potentials, precisely the type of system we study in this section (although
the potential is different).

To the non-interacting Hamiltonian in Eq. (1.54) we added an extra term to describe an
external potential

Ĥ = −t
∑
σ,〈i,j〉

c†iσcjσ +
∑
`

V`c
†
`c` , (1.101)

where V` describes the potential on site `.
Suppose we have the the ground state |Ψ0〉 of Eq. (1.101). We want to find the unequal-

time Green’s function for this ground state. Let τ = it be the imaginary time, we have

〈c`σ(τ)c†jσ〉 = 〈Ψ0|eτĤc`σ e−τĤc†jσ|Ψ0〉 (1.102)

= eτE0 〈Ψ0|c`σe−τĤc†jσ|Ψ0〉 . (1.103)

where E0 is the ground state energy i.e. the sum of all the filled energy levels. Now let’s
switch to the eigenbasis of the Hamiltonian operator. Suppose Ĥ can be diagonalized as

Ĥ = ~c†H~c (1.104)

= ~c†(Q︸︷︷︸
~d†

DQ†)~c︸︷︷︸
~d

(1.105)

where D is a diagonal matrix containing the energy eigenvalues Ei (in increasing order i.e.
the lowest energy eigenvalue is at the the top left corner of D) and the columns of Q are the
eigenvectors of H. This equation also defines new creation and annihilation operators d†

and d in this new basis. These are related to the one old ones by

#”

d † = #”c †Q =⇒ #”c † =
#”

d †Q† (1.106)
#”

d = Q† #”c =⇒ #”c = Q
#”

d . (1.107)
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Element-wise, the above two equation give the relationship between individual old and new
creation and annihilation operators:

c†jσ =
∑
n

d†nσ(Q†)nj =
∑
n

Q∗jnd
†
nσ (1.108)

c`σ =
∑
m

Q`mdmσ . (1.109)

In this new basis, Eq. (1.103) becomes

〈c`σ(τ)c†jσ〉 = eτE0
∑
mn

(Q†)njQ`m 〈Ψ0|dmσe−τĤd†nσ|Ψ0〉 . (1.110)

Since d†nσ creates a particle in the n-th eigenstate of Ĥ, d†nσ acting on |Ψ0〉 adds a particle
in the n-th eigenstate to the ground state |Ψ0〉. Let’s denote this state by |Ψ0 + n〉. We
note that because of the Pauli exclusion principle, n must be an unfilled state i.e. n > Nσ if
we start numbering n from 1. Similarly, dmσ acting to the right on |Ψ0〉 gives |Ψ0 +m〉 for
m > Nσ

〈c`(τ)c†j〉 = eτE0

N∑
m,n>Nσ

(Q†)njQ`m 〈Ψ0 +m|e−τĤ |Ψ0 + n〉 (1.111)

Acting on the left with e−τĤ and using orthonormality between |Ψ0 +m〉 and |Ψ0 + n〉 give

〈c`(τ)c†j〉 = eτE0
∑

m,n>Nσ

(Q†)njQ`me−τ(E0+En)δmn (1.112)

=
∑
n>Nσ

Q`ne−τEn(Q†)nj (1.113)

=
[
QEQ†

]
`j

(1.114)

where

• Q† is the bottom (N −Nσ)×N block of Q†.

• E is the bottom right (N−Nσ)×(N−Nσ) block of the diagonal matrix whose diagonal
elements are e−τEi (Ei are the energy eigenvalues).

We will use this result in Section 3.11.1 as a benchmark to understand the numerical behavior
of the extension to CPMC that we will develop in this thesis.





Chapter 2

The Hubbard Model

The Hubbard model is named after Hubbard [7] who introduced the Hamiltonian in
order to model electronic correlations in narrow energy bands and proposed a number
of approximate treatments of the associated many-body problem. In this chapter we will
introduce the Hamiltonian of the one-band one-dimensional Hubbard model, the principal
subject of this thesis. We will then discuss a number of useful properties of this Hamiltonian
and state the exact diagonalization (ED) algorithm to obtain the unequal-time Green’s
function of the model.

2.1 The Hubbard Hamiltonian

Here we only give a brief introduction to the Hubbard Hamiltonian because the topic has
been so extensively covered in the literature. For an excellent and comprehensive derivation,
see Essler et al. [8, pp. 1-5].

The setting for the one-band one-dimensional Hubbard model is a lattice of M sites. To
each lattice site i , we associate a Wannier wave function1 |φi〉 = φ(x−Ri) centered on site
i that serves as an orbital which can accommodates a maximum of two electrons of opposite
spin. Given this setting, the Hubbard Hamiltonian is

H = −t
∑
〈i,j〉

(c†i,acj,a + H.c.) + U
∑
i

ni↑ni↓ (2.1)

where the symbol 〈i, j〉 denotes summation over ordered pairs of nearest neighbors.
The coefficient t > 0 is called the hopping amplitude and is defined as

t = tij =

∫
dxφ∗(x−Ri)

(
−~2∇2

2m

)
φ(x−Rj) (2.2)

for all pairs i and j. The assumption that hopping occurs only between nearest neighbors is
justified because the Wannier wave functions are highly localized, making the above integral
negligible between sites beyond nearest neighbors.

The coefficient U > 0 is called the Coulomb repulsion strength and is defined as

U = Uii =

∫
dx dx′ φ∗↑(x−Ri)φ∗↓(x−Ri)V (|x− x′|)φ↓(x−Ri)φ↑(x−Ri) (2.3)

1 A Wannier wave function is a Fourier transform of the Bloch wave functions. See Ashcroft and Mermin
[28, pp. 187-9].
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for any site i where V is the Coulomb potential:

V (|x− x′|) =
e−|x−x

′|s

|x− x′|
(2.4)

in which s is called the screening length.
The model only has two parameters: the strength of the interaction U/t and the electron

density (N↑ +N↓)/M . In this thesis we will use t as the unit of energy and set t = 1.

2.2 Some properties of the Hubbard Hamiltonian

2.2.1 Conservation of particle numbers

One apparent property of the Hubbard Hamiltonian is that it separately conserves the
number of particles of spin up and spin down i.e. Ĥ commutes with n↑ =

∑
i ni↑ and

n↓ =
∑

i ni↓.
It’s easy to see that these number operators commute with the potential energy term

because
[niσ, njσ′ ] = 0 (2.5)

for all sites i, j and spins σ, σ′. It’s also clear that every term in the kinetic energy operator
conserves the total number of electrons of a particular spin because c†iσcjσ simply moves an
electron of spin-σ from site j to site i without destroying or creating any electrons.

Because the Hubbard Hamiltonian commutes with the total number operator of each
spin, we can diagonalize the Hamiltonian for fixed numbers of spin-up and spin-down. In
other words, we can choose to work in a sector with a fixed quantum number Sz.

2

2.2.2 Independence of the spin sectors in a Slater determinant

In this section, we will show that when dealing with Slater determinants in the Hubbard
model, we can treat the spin-up and spin-down sectors independently. This will become
useful in chapter 3.

Because the Hubbard model does not flip the spins of electrons, the expectation of any
one-body operators that contains fermion operators of different spins (e.g. c†i↑cj↓) will be

zero.3 This is quite an important observation whose consequence is that the only operators
we have to actually evaluate will have the form c†iσcjσ. Consider the effect [2, p. 116] of a

term like c†i↓cj↓ on a typical state |φ〉 given by

|φ〉 = [c†j1↑ . . . c
†
jM↑][c

†
i1↓ . . . c

†
iN↓] |0〉 (2.6)

The action of the operator gives

c†i↓cj↓ |φ〉 = c†i↓cj↓[c
†
j1↑ . . . cjM↑][ci1↓ . . . ciN↓] |0〉 (2.7)

= [c†j1↑ . . . cjM↑](−1)M (−1)Mc†i↓cj↓[ci1↓ . . . ciN↓] |0〉 (2.8)

= [c†j1↑ . . . cjM↑]c
†
i↓cj↓[ci1↓ . . . ciN↓] |0〉 (2.9)

2 The quantum number Sz is one of the eigenvalues of the operator Ŝz = 1
2

∑
i(ni↑ − ni↓) where we have

set ~ = 1 by convention.
3 We only need to show this is true for any energy eigenstate |Ψ〉 (because they form a basis for the

many-particle Hilbert space) which are also eigenstates of n↑. The state c†i↑cj↓ |Ψ〉 will have one more spin up

electron than |Ψ〉. By basic linear algebra, these two states are necessarily orthogonal i.e. 〈Ψ|c†i↑cj↓|Ψ〉 = 0
because they are eigenvectors corresponding to different eigenvalues of the operator n↑.
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where the two factors of (−1)M arise when we “move” the c†i↓cj↓ operator through the spin-↑
creation operators. Thus the operator c†i↓cj↓ effectively only acts on the spin-down sector. It

is easy to see that applying c†i↑cj↑ will only affect the spin-up sector.

2.3 Exact Diagonalization

To benchmark the CPMC extension in chapter 3, we have written a computer program in
MATLAB to calculate the imaginary-time Green’s function exactly for the one-dimensional
Hubbard model with periodic boundary condition. The program takes as arguments the
hopping amplitude t, the Coulomb repulsion U, the number of lattice sites N sites, the
number of spin-up and spin-down electrons N up and N dn, and the imaginary time tau. The
program returns two N sites×N sites matrices G up and G dn whose (i, j)-th element is the

imaginary-time Green’s function 〈ciσ(τ)c†jσ(0)〉. The program uses three “helper” functions:

generateBasis.m generates the basis for the Hilbert space.

1. Calculate the total number of basis states in the spin-up and spin-down sector

separately. These are given by

(
N sites

N up

)
and

(
N sites

N dn

)
, respectively.

2. For each spin sector, form all possible basis states of that sector in binary repre-
sentation where 1 denotes an occupied lattice site and 0 denotes an unoccupied
site. For example, 01010 in the spin-up sector corresponds to a 5-site lattice in
which sites 2 and 4 are each occupied by a spin-up electron and the other sites
are empty and the site numbering increases from left to right.

3. Form the basis for the full Hilbert space by forming all combinations of all
spin-up basis states and spin-down basis states. Thus, this full basis consists of(
N sites

N up

)
×
(
N sites

N dn

)
states.

4. Associate each basis state with a decimal number by converting the binary
representation to decimal. This is to facilitate lookup of basis states later.

hubbardHamiltonian.m creates the Hubbard Hamiltonian.

1. Create two square matrices, each of size

(
N sites

N up

)(
N sites

N dn

)
to hold the kinetic

and potential Hamiltonians.

2. To form the potential Hamiltonian, loop through each basis state j and use the
bit and operation to count the number of sites that are occupied in both the
spin-up and spin-down sectors and multiply the total by U. This is the value of
the (j, j)-th element of the potential Hamiltonian.

3. To form the kinetic Hamiltonian, loop through each basis state m:

(a) In the spin-up sector, for every occupied site, move the electron on that site
to the sites to its left and its right if those are not already occupied. Look up
the resulting state in the full basis of the Hilbert space. If the index of this
state is i, set the (i, j)-th element of the kinetic Hamiltonian to

• +t if the hopping was around the lattice boundary and the total number
of spin-up electrons is even.
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• −t otherwise.

(b) Repeat step 3a for the spin down sector.

4. Add the kinetic and potential Hamiltonians to get the total Hamiltonian.

creationOperator.m creates the matrix for the creation operator c†iσ. We assume σ =↑ for
this description. The procedure for σ =↓ is very similar.

1. Call generateBasis.m twice to generate the full basis for the “source” Hilbert
space (for N up spin-up and N dn spin down electrons) and the “target” Hilbert
space (for (N up + 1) spin-up and N dn spin-down electrons).

2. Create a non-square matrix of dimension

(
N sites

N up + 1

)(
N sites

N dn

)
-by-

(
N sites

N up

)(
N sites

N dn

)
to hold the resulting matrix of the creation operator.

3. Loop through each basis state m in the “source” Hilbert space:

(a) If site i is not already occupied by a spin-up electron, create a spin-up electron
on that site and look up the resulting state in the basis of the “target” Hilbert
space. Let n be the index of this resultant state in the “target” basis.

(b) Set the (n,m)-th matrix element to 1 if the number of occupied sites from
site 1 through site (i− 1) is even; otherwise, set the (n,m)-th element to -1.
This step is identical for σ =↓ except that we set the (n,m)-th element of the
matrix to 1 if the sum of the number of occupied sites from site 1 through
site (i− 1) and N up is even and set it to -1 otherwise.

With these three functions in place, we are ready to compute the unequal-time Green’s
function 〈ci↑(τ)c†j↑〉 (the procedure for 〈ci↓(τ)c†j↓〉 is very similar):

1. Create the Hubbard Hamiltonian firstHamiltonian for the Hilbert space of N up

spin-up and N dn spin-down electrons.

(a) Diagonalize firstHamiltonian to get the lowest energy eigenvector which we
call groundState.

(b) Use matrix exponentiation to get the matrix expmFirstHamiltonian, defined as

expmFirstHamiltonian = etau×I×firstHamiltonian (2.10)

where I is the identity matrix.

2. Create the matrix destructionMatrix by invoking the function creationOperator.m

to create the matrix for the operator c†i↑.

3. Create the matrix creationMatrix by invoking the function creationOperator.m to
create the matrix for the operator c†j↑.

4. Create the Hubbard Hamiltonian secondHamiltonian for the Hilbert space of (N up+1)
spin-up and N dn spin-down electrons.

(a) Use matrix exponentiation to get the matrix expmSecondHamiltonian, defined
as

expmSecondHamiltonian = e−tau×I×secondHamiltonian (2.11)

where I is the identity matrix.
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5. Evaluate 〈ci↑(τ)c†j↑〉 by computing the following matrix multiplication:

〈ci↑(τ)c†j↑〉 = groundState† × expmFirstHamiltonian×

× destructionMatrix† × expmSecondHamiltonian

× creationMatrix× groundState (2.12)

where † in the above expression denotes the Hermitian conjugate of a matrix or vector.

We tested to make sure that the results of this program agrees to within numerical precision
(10−8 to 10−9)with Eq. (1.100) when U = 0 i.e. for non-interacting electrons. We do note
that for large enough values of τ (about τ > 4), this ED algorithm is a little numerically
unstable. Although we did not have enough time to investigate the reason, we suspect that it
comes from matrix exponentiation. Because we only need τ ≤ 2 in this thesis, this numerical
issue is not a problem.

We also note that the current ED implementation is not the most optimized because
here we have only used the Ŝz symmetry of the Hubbard Hamiltonian. However, because
the Hamiltonian also commutes with the total spin Ŝ2, we can reduce the size of the matrix
to be diagonalized by a change of basis to make the Hamiltonian block-diagonal where each
block corresponds to a fixed eigenvalue of Ŝ2. For details, see Jafari [2, p. 118-9].





Chapter 3

Constrained Path Monte Carlo

This chapter is the main chapter of this thesis where we discuss the implementation of
the constrained path Monte Carlo (CPMC) method. The ground-state CPMC algorithm has
two main components. The first component is the formulation of the ground state projection
as an open-ended importance-sampled random walk. This random walk takes place in Slater
determinant space and uses importance sampling to increase the efficiency. It is exact but
suffers from the sign problem. The second component is the constraint of the paths of the
random walk so that any Slater determinant generated during the random walk maintains
an appropriate overlap with a known trial wave function |ψT〉. This constraint eliminates
the sign decay, making the CPMC method scale algebraically instead of exponentially, but
introduces a systematic error in the algorithm. These two components are independent of
each other and can be used separately. We call the combination of these two components
the ground-state CPMC algorithm.

This thesis only deals with the application of CPMC to the Hubbard model. This chapter
has adapted materials from Zhang et al. [6], Nguyen et al. [25], and Purwanto and Zhang
[29].

3.1 Slater determinant space

Here we define the notations and representations that will be used throughout this
chapter. Here we assume a one-particle basis has been chosen.

• M : the number of single-electron basis states i.e. the number of lattice sites in the
Hubbard model.

• |χi〉: the i-th single-particle basis state (i = 1, 2, . . . ,M). In this implementation of
CPMC, |χi〉 is the Wannier wave function localized on the i-th lattice site.

• c†i and ci: creation and annihilation operators for an electron in |χi〉. ni ≡ c†ici is the
corresponding number operator.

• N : the number of electrons. Nσ is the number of electrons with spin σ (σ =↑ or ↓). As
expected, Nσ ≤M .

• ϕ: a single-particle orbital. The coefficients in the expansion

|ϕ〉 =
∑
i

ϕi |χi〉 =
∑
i

c†iϕi |0〉 (3.1)
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in the single particle basis {|χi〉} can be conveniently expressed as an M -dimensional
vector: 

ϕ1

ϕ2
...
ϕM

 . (3.2)

• |φ〉: a many-body wave function which can be written as a Slater determinant. Given N
different single-particle orbitals (for N electrons), we form a many-body wave function
from their antisymmetrized product

|φ〉 ≡ ϕ̂†1ϕ̂
†
2 · · · ϕ̂

†
N |0〉 (3.3)

where the operator

ϕ̂†m ≡
∑
i

c†i ϕi,m (3.4)

creates an electron in the m-th single-particle orbital described in Eq. (3.2).

• Φ: an M ×N matrix which represents the Slater determinant |φ〉 in Eq. (3.3):

Φ ≡


ϕ1,1 ϕ1,2 · · · ϕ1,N

ϕ2,1 ϕ2,2 · · · ϕ2,N
...

...
...

ϕM,1 ϕM,2 · · · ϕM,N

 . (3.5)

Each column of this matrix is an M -dimensional vector and represents a single-
particle orbital described by Eq. (3.2). If the real-space coordinates of the electrons
are R = {r1, r2, · · · , rN}, the configuration space representation of Eq. (3.3) is

〈R|φ〉 = φ(R) = Det


ϕ1(r1) ϕ1(r2) · · · ϕ1(rN )
ϕ2(r1) ϕ1(r2) · · · ϕ2(rN )

...
...

. . .
...

ϕN (r1) ϕN (r2) · · · ϕN (rN )

 (3.6)

where
ϕm(r) =

∑
i

ϕi,mχi(r) . (3.7)

This is essentially Eq. (1.27). This is the more familiar form of a Slater determinant
encountered in introductory quantum mechanics.

It is very important to understand the difference between the representation of a Slater
determinant in second quantization (Eq. (3.5)) and in first quantization (Eq. (3.6))
even though they represent the same physical object. In first quantization, the Slater
determinant is the actual determinant of a square matrix made up of all possible com-
bination of electrons and orbitals. Taking the determinant ensures the anti-symmetry
of the wave function, as required by the spin-statistics theorem.

In second quantization, although we refer to Φ as a Slater “determinant,” we actually
never take the determinant of Φ because it is not a square matrix. The reason is that
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this matrix simply contains the coefficients for the creation operators and that the
algebra obeyed by these creation operators guarantees the antisymmetry of the wave
function.

• |Ψ〉 (upper case): a many-body wave function which is not necessarily a single Slater
determinant, e.g. the many-body ground state |Ψ0〉 in Section 3.3.

We list several useful properties of a Slater determinant in the representation of Eq. (3.5).
The first property is that for any two non-orthogonal Slater determinants, |φ〉 and |φ′〉, it
can be shown that their overlap integral is a number:

〈φ|φ′〉 = Det
(

Φ†Φ′
)
, (3.8)

where Φ† is the Hermitian conjugate of the matrix Φ. The proof of Eq. (3.8) is in Appendix C.
The second property is known as Thouless theorem because it was first discovered

(although not in the present form) by Thouless [30] and restated in the present form
by Hamann and Fahy [31]. It says that the operation on any Slater determinant in Eq. (3.3)
by the exponential of a one body operator

B̂ = exp

 M∑
ij

c†iUijcj

 (3.9)

simply leads to another Slater determinant:

B̂ |φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂

′ †
M |0〉 ≡ |φ

′〉 (3.10)

where the operators

φ̂′ †m =
∑
j

c†j Φ′jm (3.11)

create single-particle orbitals just like Eq. (3.4) and the matrix Φ′ is related to Φ in a simple
way:

Φ′ ≡ eUΦ (3.12)

where the matrix U is formed from elements Uij in Eq. (3.9).

Since B ≡ eU is an M ×M square matrix, the operation of B̂ on |φ〉 simply involves
multiplying eU , an M ×M matrix, to Φ, an M ×N matrix. The proof of Eqs. (3.10) to (3.12)
is in Appendix D.

As shown in Section 2.2.2, the spin-up and spin-down sectors of a Slater determinant
in the Hubbard model are independent. Thus, it is convenient to represent each Slater
determinant as two independent spin parts:1

|φ〉 = |φ↑〉 ⊗ |φ↓〉 . (3.13)

The corresponding matrix representation is

Φ = Φ↑ ⊗ Φ↓ (3.14)

1 Note that the direct product sign ⊗ that we use here is somewhat an abuse of notation that is used
widely in the literature. Its precise meaning in this context will be explained at the end of the current section.
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where Φ↑ and Φ↓ have dimensions M ×N↑ and M ×N↓, respectively. Because Nσ ≤M , the
matrices representing each spin sector are “tall” rather than “wide.” The overlap between any
two Slater determinants is simply the product of the overlaps of individual spin determinants:

〈φ|φ′〉 =
∏
σ=↑,↓

〈φσ|φ′σ〉 = Det
[
(Φ↑)†Φ′↑

]
·Det

[
(Φ↓)†Φ′↓

]
. (3.15)

Any operator B̂ described by Eq. (3.9) acts independently on the two spin parts:

B̂ |φ〉 = B̂↑ |φ↑〉 ⊗ B̂↓ |φ↓〉 . (3.16)

Each of the spin components of B̂ can be represented as an M ×M matrix:

B = B↑ ⊗B↓ . (3.17)

Applying B̂ to a Slater determinant simply involves matrix multiplications for the ↑ and ↓
components separately, leading to another Slater determinant |φ′〉 as in Eq. (3.10) i.e. the
result is

B↑Φ↑ ⊗B↓Φ↓ . (3.18)

Unless specified, the spin components of B̂ are identical i.e. B↑ = B↓ (note the absence of a
hat on B to denote the matrix of the operator B̂).

Now we will explain why we can separate the spin up and spin down sectors of operators
(Eq. (3.17)) and Slater determinants (Eq. (3.14)). Suppose we use a basis consisting of 2M
states where the first M states correspond to spin-up Wannier orbitals and the last M basis
states the spin-down Wannier orbitals. Because the spins are not flipped by the kinetic
Hamiltonian, the matrix of K̂ in this basis is block-diagonal

K =


K↑ O

O K↓

 (3.19)

where K↑ and K↓ are identical and O is the zero matrix. Each of these submatrices are
square matrices of size M ×M . The matrix of a Slater determinant with more spin-up
electrons than spin-down electrons has the form

Φ =


Φ↑ O

O Φ↓

 (3.20)

where Φ↑ is of size M × N↑ and Φ↓ is of size M × N↓. They are the same matrices that
appear in Eq. (3.14). Note that because we have chosen N↑ > N↓ for illustration purpose,
Φ↑ is wider (has more columns) than Φ↓. It can easily be seen that the application of the
operator K̂ in Eq. (3.19) to the Slater determinant in Eq. (3.20) retains the block-diagonal
structure of Φ. As will be shown later in Eq. (3.40), the matrix of the potential Hamiltonian
V̂ also has this block-diagonal structure. Thus we can carry around the two spin parts of
Slater determinants and operators separately.
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3.2 The Hubbard Hamiltonian

Recall from Section 2.1 that the one-band Hubbard model is a simple paradigm of a
system of interacting electrons. Its Hamiltonian is

Ĥ = K̂ + V̂ = −t
∑
〈ij〉σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓, (3.21)

where t is the hopping matrix element, and c†iσ and ciσ are electron creation and destruction
operators, respectively, of spin σ on site i. The Hamiltonian is defined on a lattice of dimension
d with M =

∏
d Ld (although this thesis only deals with the model in one dimension). The

lattice sites serve as the basis functions here i.e. |χi〉 = |i〉 denotes a Wannier wave function
localized on the site labeled by i. The notation 〈 〉 in Eq. (3.21) indicates nearest-neighbors.
The on-site Coulomb repulsion is U > 0. The model only has two parameters: the strength
of the interaction U/t and the electron density (N↑ +N↓)/M . In this paper we will use t as
the unit of energy and set t = 1.

The difference between the Hubbard Hamiltonian and a general electronic Hamiltonian is
in the structure of the matrix elements in K̂ and V̂ . In the latter, K̂ is specified by hopping
integrals of the form Kij , while V̂ is specified by Coulomb matrix elements of the form Vijk`,
with i, j, k, ` in general running from 1 to M . In terms of the CPMC method, the structure
of K̂ makes essentially no difference. The structure of V̂ , however, dictates the form of the
Hubbard-Stratonovich transformation in Section 3.5.

3.3 Ground-state projection

The ground-state wave function |Ψ0〉 can be obtained from any trial wave function |ΨT〉—
provided that |ΨT〉 is not orthogonal to |Ψ0〉 and the ground-state is non-degenerate—by
repeated applications of the ground-state projection operator

Pgs = e−∆τ(Ĥ−ET) , (3.22)

where ET is the best estimate of the ground-state energy. That is, if the wave function at
the imaginary time τ is |Ψ(τ)〉, the wave function at time τ + ∆τ is given by

|Ψ(τ+∆τ)〉 = e−∆τ(Ĥ−ET) |Ψ(τ)〉 . (3.23)

To see why repeated application of Pgs in Eq. (3.22) gives the ground-state |Ψ0〉, suppose
we apply Pgs n times to a trial wave function |ΨT〉 that can be expanded in an eigenbasis

{|Ψj〉} of Ĥ with coefficients aj :

|ΨT〉 =
∑
j=0

aj |Ψj〉 . (3.24)

It is easy to see [32] that the application of e−τ(Ĥ−ET) where τ = n∆τ gives

e−τ(Ĥ−ET) |ΨT〉 =
∑
j=0

aj e−τ(Ej−ET) |Ψj〉 (3.25)

= a0 e−τ(E0−ET) |Ψ0〉+
∑
j=1

aj e−τ(Ej−ET) |Ψj〉 , (3.26)
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where we have assumed the non-degeneracy of the lowest energy eigenstate in the last equality.
Because E0 is the smallest of all the Ej , one can infer from Eq. (3.26) the asymptotic behavior

of e−τ(Ĥ−ET) |ΨT〉 as τ →∞ (i.e. n→∞):

• If ET > E0, limτ→∞ e−τ(Ĥ−ET) |ΨT〉 = ∞: the wave function diverges exponentially
fast.

• If ET < E0, limτ→∞ e−τ(Ĥ−ET) |ΨT〉 = 0: the wave function vanishes exponentially
fast.

• If ET = E0, limτ→∞ e−τ(Ĥ−ET) |ΨT〉 = a0 |Ψ0〉: the wave function converges to the
ground state, up to a constant factor a0 = 〈Ψ0|ΨT〉.

This behavior is the basis of the ground-state projection. For ET = E0, any trial wave
function |ΨT〉 will converge to the ground state |Ψ0〉 as long as there is a numerically
significant overlap between them because the excited states are attenuated exponentially.
In practice, this overlap is always large enough because |ΨT〉 is always the ground-state
obtained from calculations with non-interacting systems (which is what we use here) or
calculations with mean-field theory (in more advanced implementations). These calculations
are numerically cheap and simple.

ET in this projection process essentially plays the role of a normalizing factor. Because Pgs

is related to the usual quantum mechanical time-evolution operator e−itĤ by the identification
τ = it, Pgs is also called the imaginary-time propagator. Two essential ingredients are needed
in order to evaluate Pgs within reasonable computing time: the Suzuki-Trotter decomposition
and the Hubbard-Stratonovich transformation.

3.4 Suzuki-Trotter decomposition

For a general Hamiltonian Ĥ = K̂ + V̂ where K̂ is a one-body operator and V̂ a two-
body operator (specifically, the kinetic and potential operator in the Hubbard model). The
Suzuki-Trotter decomposition allows us to treat K̂ and V̂ separately at the cost of an error
proportional to the commutator of K̂ and V̂ . The first-order non-symmetric form is

e−∆τĤ = e−∆τ(K̂+V̂ ) = e−∆τK̂e−∆τV̂ +O(∆τ2)[K̂, V̂ ] . (3.27)

We can reduce the time step error by using the second-order symmetric version of the
decomposition:

e−∆τĤ = e−∆τ(K̂+V̂ ) = e−∆τK̂/2e−∆τV̂ e−∆τK̂/2 + ε . (3.28)

The error ε, quoting from Linden [33, p. 68], is

ε ≤ (∆τ)3 |[K̂, [K̂, V̂ ]]|+ 2|[V̂ , [K̂, V̂ ]]|
24

. (3.29)

The important thing to note is that the error per time step is proportional to (∆τ)3.
Suppose the desired total length of projection is τ = n∆τ then the error accumulated due
to this decomposition along the entire projection interval τ is:( τ

n

)3
n =

( τ
n

)2
τ = τ(∆τ)2 = O(∆τ2) . (3.30)
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The residual Trotter error can be removed by, for example, extrapolation with several
independent runs of sufficiently small ∆τ values. Eq. (3.28) is the version we will use in this
implementation.

3.5 The Hubbard-Stratonovich transformation

In Eq. (3.28), the kinetic energy propagator

B̂K/2 ≡ e−∆τK̂/2 (3.31)

has the same form as Eq. (3.9). However, the potential energy propagator e−∆τV̂ does not. In

general, a Hubbard-Stratonovich (HS) transformation can be employed to transform e−∆τV̂

into the desired form (see Appendix A for more details). In the repulsive Hubbard model,
we can use the following special form of the HS transformation, called the discrete Hirsch
spin transformation, first discovered by Hirsch [18]:

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

p(xi) eγxi(ni↑−ni↓) , (3.32)

where γ is given by cosh(γ) = exp(∆τU/2). We interpret p(xi) = 1/2 as a discrete probability
density function (PDF) with xi = ±1. This transformation is proved in Appendix B.

In Eq. (3.32), the exponent on the left, which comes from the interaction term V̂ on the
i-th site, is quadratic in n, indicating the interaction of two electrons. The exponents on
the right, on the other hand, are linear in n, indicating two non-interacting electrons in a
common external field characterized by xi. Thus an interacting system has been converted
into a non-interacting system living in fluctuating external auxiliary fields xi, and the
summation over all such auxiliary-field configurations recovers the many-body interactions.
The linearized operator on the right hand side in Eq. (3.32) is the spin (ni↑ − ni↓) on each
site, hence the name of the transformation.

We note in passing that there exist other ways to do the HS transformation (see Ap-
pendix A) and that different forms of the HS transformation can have different efficiencies
in different situations.

Since we represent a Slater determinant as individual spin determinants in Eq. (3.13), it
is convenient to spin-factorize Eq. (3.32) as

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

p(xi)
[
b̂↑V (xi)⊗ b̂↓V (xi)

]
(3.33)

where the spin-dependent operator b̂σV (xi) on the i-th lattice site is defined as

b̂σV(xi) = es(σ) γ xic
†
iσciσ (3.34)

and s(↑) = +1 and s(↓) = −1. It is easy to see that b̂σV is diagonal in the eigenbasis of the

operator Nσ. The related operator b̂V(xi) (i.e. without σ) includes both the spin up and
spin down parts:

b̂V(xi) = b̂↑V(xi)⊗ b̂↓V(xi) . (3.35)

Below we will use the corresponding symbol without hat (bV) to denote the matrix represen-
tation of the operator (̂bV) associated with that symbol.
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The potential energy propagator e−∆τV̂ over all sites can easily be seen to be the product
of the propagators e−∆τUni↑ni↓ over each site:

e−∆τV̂ =
∏
i

e−∆τUni↑ni↓ (3.36)

e−∆τV̂ = e−∆τU(N↑+N↓)/2
∑

#”x

P ( #”x )
∏
σ=↑,↓

B̂σ
V ( #”x ) (3.37)

where #”x = {x1, . . . , xM} is one configuration of auxiliary fields over all M sites and

B̂σ
V ( #”x ) =

∏
i

b̂σV (xi) (3.38)

is the #”x -dependent product of the spin-σ propagators over all sites. The overall PDF
in Eq. (3.37) is

P ( #”x ) =
∏
i

p(xi) =

(
1

2

)M
(3.39)

to be distinguished from the PDF p(xi) for one individual auxiliary field xi in Eq. (3.33).
We now make a quick digression to discuss the structure of Bσ

V ( #”x ). In the basis of 2M
space-spin states (see the discussion leading to Eqs. (3.19) and (3.20)), the matrix for Bσ

V ( #”x )
is block-diagonal:

Bσ
V ( #”x ) =


∏
i b̂
↑(xi) O

O
∏
i b̂
↓(xi)

 (3.40)

because the operators b̂σV(xi) as defined in Eq. (3.34) do not flip the spins of electrons.
With Eq. (3.37) in hand, now the projection operator in Eq. (3.22) can be expressed

entirely in terms of one-body operators of the form in Eq. (3.9):

Pgs = e∆τ [ET−U(N↑+N↓)/2]
∑

#”x

P ( #”x )
∏
σ=↑,↓

B̂σ
K/2B̂

σ
V( #”x )B̂σ

K/2 . (3.41)

As noted in Eq. (3.16), BK/2 has an ↑ and a ↓ component, each of which is an M ×M matrix.

Applying each B̂K/2 to a Slater determinant |φ〉 simply involves matrix multiplications with
the matrix BK/2 for the ↑ and ↓ components of Φ separately, leading to another Slater
determinant |φ′〉 as in Eq. (3.10).

As it stands now, we can sample configurations #”x by flipping a coin M times and pick the
fields accordingly. As discussed later, this simple sampling scheme leads to a very inefficient
random walk.

3.6 A toy model for illustration

Let us take, for example, a simple one-dimensional four-site Hubbard model with N↑ = 2,
N↓ = 1 and open boundary condition. The sites are numbered sequentially. First let us
examine the trivial case of free electrons i.e. U = 0. We can write down the one-electron
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Hamiltonian matrix, which is of dimension 4× 4:

H =


0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0

 . (3.42)

Direct diagonalization gives us the eigenstates of H from which we immediately obtain the
matrix Φ0 for the ground-state wave function |ψ0〉:

Φ0 =


0.3717 −0.6015
0.6015 −0.3717
0.6015 0.3717
0.3717 0.6015

⊗


0.3717
0.6015
0.6015
0.3717

 (3.43)

where the first matrix contains two single-particle orbitals (two columns) for the two ↑
electrons and the second matrix contains one single-electron orbital for the one ↓ electron.
Each single-electron orbital is an eigenvector of Ĥ in Eq. (3.42). The matrix Φ0 represents
|φ0〉 in the same way that Eq. (3.5) represents Eq. (3.3) and is the trial wave function used
in our CPMC implementation.

Next we consider the interacting problem, with U > 0. Applying the HS transformation
of Eq. (3.32) to Eq. (3.28), the projection operator is now

Pgs = e∆τ [ET−U(N↑+N↓)/2]
∑
~x

P (~x)

BK/2 ·


eγx1 0 0 0

0 eγx2 0 0
0 0 eγx3 0
0 0 0 eγx4

 ·BK/2⊗

⊗BK/2 ·


e−γx1 0 0 0

0 e−γx2 0 0
0 0 e−γx3 0
0 0 0 e−γx4

 ·BK/2


(3.44)

where ~x = {x1, x2, x3, x4} and P ( #”x ) =
(

1
2

)4
and BK/2 is the exponential of the matrix

− ∆τ

2


0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0

 . (3.45)

Eq. (3.44) is just Eq. (3.41) specialized to a four-site lattice.

3.7 Random walk in Slater determinant space

The first component of the CPMC algorithm is the reformulation of the projection
process as branching, open-ended random walks in Slater determinant space. As shown
in Eq. (1.27), any antisymmetric wave function can be written as a linear combination of
Slater determinants i.e.

|Ψ〉 =
∑
φ

λΨ(φ) |φ〉 (3.46)
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where the sum is over each member of the Slater determinant basis which is nonorthogonal
and overcomplete.

In CPMC, we represent the wave function at each stage by a finite ensemble of Slater
determinants, i.e.

|Ψ(τ)〉 =

Nwlkr∑
j=1

|φ(τ)
j 〉 . (3.47)

where the “=” sign denotes equality in the limit of infinite population. Because the random
walk is essentially a dynamical process which evolves in imaginary time τ , the parenthesized
superscript (τ) differentiates the “generations” of these walkers along the imaginary time
axis. The subscript j indexes the Slater determinants2 with the same τ and an overall
normalization factor of the wave function has been omitted. These Slater determinants will
be referred to as random walkers because they evolve according to a random walk.

At any stage of the algorithm, the sum in Eq. (3.47) will be over only part of the
basis because, as shown later, the determinants in this sum are statistical samples whose
distribution represents the linear coefficients λΨ(φ) in Eq. (3.46). Eq. (3.47) will serve as the
definition of the Monte Carlo representation of a wave function in the CPMC method. In
this implementation, we will start form an initial ensemble |Ψ(0)〉 in which all walkers are

identical to a single trial Slater determinant |φT〉 i.e. |φ(0)
j 〉 = |φT〉 for all j.

Applying the HS-transformed propagator in Eq. (3.41) to one projection step in Eq. (3.23)

gives the evolution of a single Slater determinant |φ(τ)
j 〉 in the ensemble in Eq. (3.47):

|φ(τ+∆τ)
j 〉 = e∆τ [ET−U(N↑+N↓)/2]

∑
#”x

P ( #”x )
[
B̂K/2B̂V( #”x )B̂K/2

]
|φ(τ)

j 〉 (3.48)

where we have defined

B̂V( #”x ) =
∏
σ

B̂σ
V ( #”x ) (3.49)

as we have done for b̂V in Eq. (3.35).
According to Kalos and Whitlock [26, pp. 162-3], the iteration of Eq. (3.48) can be

achieved stochastically by MC sampling of #”x . That is, for each random walker |φ(τ)
j 〉, we

choose an auxiliary-field configuration #”x according to the PDF P ( #”x ) and propagate the
determinant to a new determinant via

|φ(τ+∆τ)
j 〉 = B̂K/2B̂V( #”x )B̂K/2 |φ

(τ)
j 〉 . (3.50)

We repeat this procedure for all walkers in the population. These operations accom-
plish one step of the random walk. The new population represents |Ψ(τ+∆τ)〉 in the sense
of Eq. (3.47), i.e.

|Ψ(τ+∆τ)〉 =
∑
j

|φ(τ+∆τ)
j 〉 . (3.51)

These steps are iterated indefinitely. After an equilibration phase, all walkers thereon are
MC samples of the ground-state wave function |Ψ0〉 and ground-state properties can be
computed. We will refer to this type of approach as free projection.

2The indices for Slater determinants in an ensemble are typeset in Euler Fraktur typeface (i, j) in order to
distinguish them from imaginary unit in roman typeface (i,j) and single-particle basis indices and lattice site
indices in default italic typeface (i,j).
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Note that the overall prefactor e∆τ [ET−U(N↑+N↓)/2] in Eq. (3.48) is just a scalar and is
the same for all walkers. As discussed in Section 3.8, it will be incorporated into the walker’s
weight.

3.8 Importance sampling

To obtain efficient sampling, the random walkers should give roughly the same contribution
i.e. their weights should roughly be of the same order. Roughly speaking, the weight is a
measure of the “importance” of a walker to the description of the wave function. Those with
large weights should be split into several identical walkers with smaller weights. Similarly,
those with small weights should be eliminated with a proper probability. This mechanism is
called population control.

What quantity should define this weight? One choice (though not the best) is the square
root of the Slater determinant’s magnitude i.e.

w
(τ)
j =

√
〈φ(τ)

j |φ
(τ)
j 〉 . (3.52)

With this weight choice, the Monte Carlo representation of a wave function in Eq. (3.47)
takes on a different formal appearance:

|Ψ(τ)〉 =

Nwlkr∑
j=1

w
(τ)
j

|φ(τ)
j 〉√

〈φ(τ)
j |φ

(τ)
j 〉

. (3.53)

Note that the weights also carry an imaginary time stamp because they evolve with the
walkers and must be carried along with the wave function {|φj〉} in order to get the correct
ground state wave function.

There is one important feature of Eq. (3.53). We can safely scale the walker |φ(τ)
j 〉 by

any arbitrary constant because this constant will cancel in the ratio
|φ(τ)

j 〉√
〈φ(τ)

j |φ
(τ)
j 〉

. The true

ground state wave function is fully recoverable as long as the weight factor w
(τ)
j contains the

actual value of the normalization constant (i.e. not scaled by any constant).

3.8.1 Importance-sampled random walkers

In practice, the efficiency of the simple random walk described in Section 3.7 is very low
because the random walk naively samples the Hilbert space and causes the weights of the
walkers to fluctuate greatly, leading to large statistical noise.

We now introduce an importance sampling scheme to increase the walk’s efficiency by
using the information provided by the trial wave function |φT〉 to guide the random walk
into regions where the expected contribution to the wave function is large. The weight of a

walker |φ(τ)
j 〉 is defined to be its overlap with the trial wave function |φT〉 i.e.

w
(τ)
j = 〈φT|φ(τ)

j 〉 . (3.54)

The overlap enters to redefine the weight factor such that walkers which have large overlap
with |φT〉 will be considered more “important” and will tend to be sampled more. Such
walkers will also have greater contribution in the measured observables.
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Like Eq. (3.53), this weight definition leads to a Monte Carlo representation of the wave
function of the form

|Ψ(τ)〉 =
∑
j

w
(τ)
j

|φj〉(τ)

〈φT|φ(τ)
j 〉

. (3.55)

Since a walker appears in a ratio |φj〉/〈φT|φj〉, its normalization is no longer relevant and can
be discarded. The only meaningful information in |φj〉 is its position in the Slater determinant
space.

3.8.2 Modified Hirsch spin transformation

With the weight defined in Eq. (3.54), we now iterate a formally different but mathemat-
ically equivalent version of Eq. (3.48), as proved in Appendix E:

|φ̃(τ+∆τ)
j 〉 = e∆τ [ET−U(N↑+N↓)/2]

∑
#”x

P̃ ( #”x )B̂K/2B̂V( #”x )B̂K/2 |φ̃
(τ)
j 〉 . (3.56)

The importance-sampled walkers are the same as in Eq. (3.55):

|φ̃(τ)
j 〉 =

|φj〉(τ)

〈φT|φ(τ)
j 〉

. (3.57)

The new normalized discrete PDF in Eq. (3.56) is

P̃ ( #”x ) =
∏
i

[
p̃(xi)

Ni(φ
(τ)
j )

]
(3.58)

where the probability for sampling the auxiliary field xi = ±1 at each lattice is given by

p̃(xi) = p(xi)
〈φT |̂bV(xi)|φ(τ)

j,i−1〉

〈φT|φ(τ)
j,i−1〉

(3.59)

and the normalization factor for each site is

N(φ
(τ)
j,i ) =

1

2

[〈
φT

∣∣∣ b̂V(xi = +1)
∣∣∣φ(τ)

j,i−1

〉
+
〈
φT

∣∣∣ b̂V(xi = −1)
∣∣∣φ(τ)

j,i−1

〉]
. (3.60)

In Eqs. (3.59) and (3.60), the notation

|φ(τ)
j,i−1〉 = b̂V (xi−1) b̂V (xi−2) · · · b̂V (x1) |φ(τ)

j 〉 (3.61)

denotes the state of the j-th walker, |φ(τ)
j 〉, just after its first (i− 1) fields have been sampled

and updated, and

|φ(τ)
j,i 〉 = b̂V (xi) |φ(τ)

j,i−1〉 (3.62)

is the next sub-step after the i-th field is selected and the walker is updated. Thus in this
notation:

• |φ(τ)
j,0 〉 is the walker before any auxiliary field sampling is done at the current time

step. Because we apply the propagators in the order specified in Eq. (3.56), applying
B̂K/2 to a walker that has just finished the iteration for τ −∆τ makes it ready for the
sampling of the first auxiliary field in the iteration τ :

B̂K/2 |φ
(τ−∆τ)
j 〉 = |φ(τ)

j,0 〉 . (3.63)
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• |φ(τ)
j,M 〉 is the walker after the auxiliary fields on all sites have been sampled. Applying

B̂K/2 to a walker that has just completed the sampling of all auxiliary fields for time τ
will complete the iteration i.e. take it to the beginning of the iteration for time τ + ∆τ

B̂K/2 |φ
(τ)
j,M 〉 = |φ(τ+∆τ)

j 〉 . (3.64)

P̃ ( #”x ) is a function of both the current and future positions in Slater determinant space
and modifies P ( #”x ) such that the probability of sampling #”x is increased when #”x leads to a
determinant with larger overlap with |φT〉 and is decreased otherwise.

In each p̃(xi), xi can only take the values of +1 or −1 and can be sampled by choos-

ing xi from the PDF p̃(xi)/N(φ
(τ)
j,i ) and multiplying the weight of the walker by N(φ

(τ)
j,i )

(see Appendix E).
We note that the ratio of the overlaps in Eq. (3.59) involves a change of only one row in

the matrix representation Φj of |φ(τ)
j 〉 and, in our implementation, is computed quickly using

the Sherman-Morrison formula [34]. The inverse of the overlap matrix
[
(ΦT)†(Φ

(τ)
j )
]−1

is

kept and updated after each xi is selected.3

3.9 The sign problem and the constrained path approxima-
tion

The sign problem occurs because of the fundamental symmetry between the fermion
ground state |Ψ0〉 and its negative − |Ψ0〉 [35]. This symmetry implies that, for any ensemble
of Slater determinants {|φ〉} which gives a Monte Carlo representation of the ground-state
wave function, there exists another ensemble {− |φ〉} which is also a correct representation.
In other words, the Slater determinant space can be divided into two degenerate halves
(+ and −) whose bounding surface N is defined by 〈Ψ0|φ〉 = 0. This surface is in general
unknown. Except for some special cases [18], walkers do cross N in their propagation by Pgs,
causing the sign problem. The constrained-path approximation relies on the observation
that at the instant such a walker lands on N , the walker will make no further contribution
to the representation of the ground state at any later time because

〈Ψ0|φ〉 = 0 =⇒ 〈Ψ0|e−τH |φ〉 = 0 for any τ . (3.65)

Paths that result from such a walker have equal probabilities of being in either half of
the Slater determinant space [5]. Computed analytically, they would cancel and make no
contribution in the ground-state wave function. However, because the random walk has no
knowledge of N , these paths continue to be sampled (randomly) in the random walk and
become Monte Carlo noise.

To eliminate the decay of the signal-to-noise ratio, we impose the constrained path
approximation. It requires that each random walker at each step have a positive overlap
with the trial wave function |φT〉:

〈φT|φ(n)
j 〉 > 0. . (3.66)

3 There are two reasons for keeping the inverse of the overlap matrix
[
(ΦT)†(Φ

(τ)
j )
]−1

instead of the

overlap matrix itself. One is convenience in the Sherman-Morrison update. Another is that the inverse has
smaller size (N↑ ×N↑ or N↓ ×N↓) than the actual overlap (M ×M).
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This yields an approximate solution to the ground-state wave function,

|Ψc
0〉 =

∑
j

|φj〉 (3.67)

in which all Slater determinants |φj〉 satisfy Eq. (3.66). Note that from Eq. (3.65), the
constrained path approximation becomes exact for an exact trial wave function |ψT〉 = |Ψ0〉.
The constrained path approximation is easily implemented by eliminating a walker when its
overlap with the trial wave function becomes zero or negative.

3.10 Measurement of physical observables

The ground-state expectation value of an observable Â is

〈Â〉gs =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

. (3.68)

In principle, we can use the same Monte Carlo sample as both |Ψ0〉 and 〈Ψ0|. A “brute-force”

measurement on the population {|φ(τ)
j 〉} is given by

〈Â〉
(τ)

bf =

∑
ij

[w
(τ)
j ]∗w

(τ)
i 〈φ

(τ)
j |Â|φ

(τ)
i 〉∑

ij

[w
(τ)
j ]∗w

(τ)
i 〈φ

(τ)
j |φ

(τ)
i 〉

(3.69)

and the estimator 〈Â〉bf is the average of such measurements. Because the walkers are
nonorthogonal in CPMC, Eq. (3.69) is in principle well-defined. The ground-state energy
estimated in this way is variational and converges to the exact value in the limit of large
Nwlkr, the number of walkers. However, in practice, the use of 〈Â〉bf is limited to smaller
systems. In general, it will have large variances. Reducing the variance is expensive because
the computational cost of 〈Â〉bf scales as O(N2

wlkr).

3.10.1 The mixed estimator and energy

The simplest way to compute observables is with the so-called mixed estimator

〈Â〉mixed ≡
〈φT|Â|Ψ(τ)〉
〈φT|Ψ(τ)〉

. (3.70)

For example, the mixed estimator for the energy is the same as the true estimator and, for
an ensemble {|φ〉}, is given by

Emixed =

∑
jwjEL [φT, φj]∑

jwj
. (3.71)

where we have defined the local energy EL as

EL [φT, φj] =
〈φT|Ĥ|φj〉
〈φT|φj〉

. (3.72)
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The local energy can be easily evaluated for any walker |φ〉 as follows. For any pair of

Slater determinants |φT〉 and |φ〉, we can calculate the expectation of the operator c†jσciσ as:

〈c†jσciσ〉 ≡
〈φT|c†jσciσ|φ〉
〈φT|φ〉

=
[
Φσ [ (Φσ

T)†Φσ ]−1(Φσ
T)†
]
ij
. (3.73)

Eq. (3.73) is proved in Appendix F and immediately enables the computation of the kinetic

energy term
〈
φT

∣∣∣−t∑〈ij〉σ c†iσcjσ ∣∣∣φ〉. The potential energy term
〈
φT

∣∣∣U∑i c
†
i↑ci↑c

†
i↓ci↓

∣∣∣φ〉
does not have the form of Eq. (3.73), but can be reduced to that form by an application of
Wick’s theorem:4

〈c†i↑ci↑c
†
i↓ci↓〉 = 〈c†i↑ci↑〉 〈c

†
i↓ci↓〉+ 〈c†i↑ci↓〉 〈ci↑c

†
i↓〉 (3.75)

= 〈c†i↑ci↑〉 〈c
†
i↓ci↓〉 . (3.76)

The reduction to the last line occurs because 〈c†i↑ci↓〉 and 〈ci↑c†i↓〉 evaluate to zero. The
reason is explained in Section 2.2.2.

The mixed estimator for the energy arises naturally from importance sampling, and
reduces the statistical variance of the computed result. A drawback of the mixed estimator is
that the ground-state energy obtained in AFQMC under the constrained path approximation
is not variational [5]. The mixed estimators for observables which do not commute with the
Hamiltonian are biased. The back-propagation technique, as discussed in Appendix I, can
be used to obtain pure estimates [6, 29].

3.10.2 Non-commuting observables and back propagation

The mixed estimator in Eq. (3.70) is exact only if the operator Â commutes with the
Hamiltonian. Otherwise, a systematic error arises due to the non-commutativity. One can
correct for this systematic error by combining the mixed estimator with the so-called purely
variational estimator

〈Â〉var ≡
〈φT|Â|φT〉
〈φT|φT〉

(3.77)

in the following ways

〈Â〉extrap1 = 2 〈Â〉mixed − 〈Â〉var (3.78)

〈Â〉extrap2 =
〈Â〉

2

mixed

〈Â〉var

. (3.79)

These corrections are good only if |φT〉 does not differ significantly from |Ψ0〉. In general,
we need the back-propagation scheme to obtain the correct ground-state properties where we
actually propagate both the wave functions on the right- and left-hand side of the operator
Â in Eq. (3.68). This gives to the back-propagated estimator :

4 Wick’s theorem essentially says that any multi-point Green’s function can be decomposed into sums and
products of two-point Green’s functions. This is a standard result in many-body quantum theory e.g. Negele
and Orland [27, pp. 75-8]. The form of the theorem used in this thesis is stated in Santos [36, p. 40]:

〈c†x1cx2c
†
x3cx4〉 #”

X
= 〈c†x1cx2〉 #”

X
〈c†x3cx4〉 #”

X
+ 〈c†x1cx4〉 #”

X
+ 〈cx2c

†
x3〉 #”

X
(3.74)

where x1, x2, x3 and x4 are space-spin basis states. We have included the auxiliary-field path
#”
X to remind

the reader that this identity only holds for a fixed auxiliary-field path.
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〈Â〉bp =
〈φT|e−τbpĤÂ|Ψ0〉
〈φT|e−τbpĤ |Ψ0〉

. (3.80)

The back-propagation technique was first introduced by Zhang et al. [6] and discussed in
details by Purwanto and Zhang [29]. It reuses the auxiliary field “paths” from different

segments of the random walk to obtain 〈φT| e−τbpĤ while avoiding the O(N2
wlkr) scaling of a

brute-force evaluation with two separate populations in Eq. (3.69).
The method is derived in detail in Appendix I. The resulting procedure to obtain a

back-propagated estimator 〈Â〉bp is as follows:

1. At some time τ (which shall be fixed in this procedure) of the regular forward walk,

the collection of all weights and walkers {|φ(τ)
j 〉 , w

(τ)
j } are recorded.

2. The forward random walk continues for an imaginary time interval τbp and the auxiliary-
field “path” for each walker is remembered. This path is made of the propagators

B̂
(τ)
j ≡ B̂K/2B̂V( #”x

(τ)
j )B̂K/2 (3.81)

at each time step.

3. Temporarily stop the forward walk when it reaches imaginary time τ ′ = τ + τbp. The

population of the forward walk at this stage is {|φ(τ ′)
j 〉 , w

(τ ′)
j } .

4. Perform an importance-sampled backward random walk

(a) Initiate the back-propagated population {|η(θ)
j 〉 , u

(θ)
j }, consisting of the same

number of walkers as the population {|φ(τ ′)
j 〉}, to be the same as the trial wave

function:

|η(θ=0)
j 〉 = |φT〉 (3.82)

u
(θ=0)
j = 〈φ(τ)

j |φT〉 (3.83)

where θ ranges from 0 to τbp and is the imaginary time stamp for the backward
walk.

(b) Back-propagate the population {|η(θ)
j 〉 , u

(θ)
j } up to time θ = τbp by applying the

propagators B
(τ)
j (as defined in Eq. (3.81)) in reverse order in τ . Note that no

auxiliary field sampling is necessary here. At every step of the backward walk,
update the weight the same way as in a forward walk except that the “guiding”

wave function is |φ(τ)
j 〉 instead of |φT〉 where j is the index of the forward walker

whose path is being back-traversed by the current backward walker.

5. Calculate the back-propagated estimator as

〈Â〉bp =

∑
j

w
(τ ′)
j

〈η(τbp)
j |Â|φ(τ)

j 〉

〈η(τbp)
j |φ(τ)

j 〉∑
j

w
(τ ′)
j

. (3.84)

Note that the walkers in the back-propagated population and the forward-propagated
population must be matched in a one-to-one manner and the weights in Eq. (3.84) are
those at the later time τ ′.



3.11. Unequal-time Green’s function 43

6. Resume the forward random walk that was interrupted in step 3 and repeat this
procedure many times to obtain more back-propagated estimators.

The back-propagated estimator in Eq. (3.84) parallels the Metropolis AFQMC estimator
for the ground state expectation of Â in Eq. (G.30) in Appendix G. The 〈ηj|’s and |φj〉’s
have similar meanings. The only difference lies in how the paths are generated. In CPMC an
open-ended random walk is used to advance an ensemble of paths from τ to τ ′, which result in
fluctuating weights that represent the path distribution. In Metropolis AFQMC, a fixed length
path corresponding to τbp +τeq (with τeq being the minimum time for equilibration) is moved
about by the Metropolis algorithm, which estimates branching by the acceptance/rejection
step. In other words, the estimators in Eqs. (3.84) and (G.30) are the same except for the
weights.

The back-propagated estimator in Eq. (3.84) can be used to calculate the equal-time

Green’s function 〈cic†j〉 because the numerator of Eq. (3.84) contains

〈η(τbp)
j |ciσc†jσ|φ

(τ)
j 〉

〈η(τbp)
j |φ(τ)

j 〉
= I −

[
Φ
σ,(τ)
j

[ (
Ω
σ,(τbp)
j

)†
Φ
σ,(τ)
j

]−1(
Ω
σ,(τbp)
j

)†]
ji

(3.85)

where Ω
σ,(τbp)
j is the matrix of the spin-up sector of |η(τbp)

j 〉. Eq. (3.85) is proved in Appendix F.
The unequal-time Green’s function is also a non-commuting observable but because the
procedure to calculate it is lengthy, it will be discussed in the next section.

3.11 Unequal-time Green’s function

In this section we will develop a procedure to calculate the unequal-time Green’s function
in CPMC. We will need results proved in Appendix H (a very important appendix). For any
two Slater determinants |φ1〉 and |φ2〉 and τ > 0, their unequal-time Green’s function

Gσ(τ, 0)`j =
〈φ1|c`σ(τ)c†jσ(0)|φ2〉

〈φ1|φ2〉
(3.86)

can be expressed as a product of unequal-time Green’s functions over L smaller time slices,
each of length ε (i.e. Lε = τ)

G(τ, 0) =

L−1∏
n=0

G
(

(n+ 1)ε, nε
)
. (3.87)

The decomposition into smaller time slices ε is exact and helps reduce numerical errors.
Each of the unequal-time Green’s functions over the ε interval is given by:

G
(

(n+ 1)ε, nε
)
`j

=
[
B
(

(n+ 1)ε, nε
)
G(nε)

]
`j

(3.88)

where

• B
(

(n+ 1)ε, nε
)

is the product of propagators that evolves a Slater determinant from

time nε to time (n+ 1)ε.
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• G(nε) is the equal-time Green’s function for the two Slater determinants |φ1〉 and |φ2〉
at time nε. Recall that from Appendix F, the equal-time Green’s function for any two
Slater determinants |φ〉 and |φ′〉 is

G = I − Φ(Φ′†Φ)−1Φ′ (3.89)

where the (i, j)-the element of G is

Gij =
〈φ′|cic†j |φ〉
〈φ′|φ〉

(3.90)

Also recall from Appendix F that by “equal-time,” we mean there are no time evolution
operators sandwiched between ci and c†j .

Because the equal-time Green’s function G(nε) is well-behaved due do the numerical stabi-
lization scheme outlined in Appendix J, the small time interval ε in Eq. (3.87) is chosen so

that the propagator matrix B
(

(n+ 1)ε, nε
)

is well-conditioned.

3.11.1 Non-interacting electrons in an external potential

Before implementing Eq. (3.87) to calculate unequal-time Green’s function in the Hubbard
model (which requires stochastic sampling of auxiliary fields as outlined thus far in this
chapter), we want to understand its numerical behavior where exact non-stochastic results
are easy to obtain. A non-interacting system subject to an external potential, studied
in Section 1.2.3, is an excellent testbed for this purpose because the exact result is easy to
obtain and involves no stochasticity.

We will now summarize summarize the results of Section 1.2.3. The Hamiltonian for a
non-interacting system in an external potential is

Ĥ = −t
∑
σ,〈i,j〉

c†iσcjσ +
∑
`

V`c
†
`c` . (3.91)

Here we assume a one-dimensional lattice of M sites with N↑ spin-up electrons, N↓ spin-down
electrons and periodic boundary conditions. We also assume Nσ is odd to avoid energy
degeneracy. For this section, we choose the potential to be sinusoidal:5

V` = cos

(
2π`

M

)
. (3.92)

To find the unequal-time Green’s function, we first diagonalize the Hamiltonian matrix
H as

H = QDQ† (3.93)

where D is a diagonal matrix containing the energy eigenvalues Ei (in increasing order i.e.
the lowest energy eigenvalue is at the the top left corner of D) and the columns of Q are the
eigenvectors of H. The unequal-time Green’s function is then given by

〈c`(τ)c†j〉 =
[
QEQ†

]
`j

(3.94)

where
5 Furthermore, because potential energy term in Eq. (3.91) does not commute with the kinetic energy term,

we will have the the Trotter error in the projection process. This makes the test more “realistic” because we
will be forced to choose a small value of ∆τ just as we have to in regular projection by Monte Carlo.
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Figure 3.1: Step 1 in the procedure.

• Q† is the bottom (N −Nσ)×N block of Q†.

• E is the bottom right (N−Nσ)×(N−Nσ) block of the diagonal matrix whose diagonal
elements are e−τEi (Ei are the aforementioned energy eigenvalues).

Eq. (3.94) provides the benchmark to test the numerical behavior of the extension to
CPMC that we will develop in chapter 3. For this test, we will next describe a procedure
that looks very contrived to calculate the unequal-time Green’s function. Its true utility will
become clear in Section 3.11.2.

Procedure

The following temporal quantities are used in this procedure to calculate the unequal-time
Green’s function 〈c`σ(τ)cjσ〉 for a non-interacting system subject to an external sinusoidal
potential:

• ∆τ is the Trotter time step in the projection operator.

• τ is the imaginary time interval in the unequal-time Green’s function 〈c`σ(τ)c†jσ〉.

• ε is the division of τ into L smaller time steps i.e. Lε = τ in Eq. (3.87).

• τeq is the equilibration time for the left-hand walker.

Note that in this procedure, by “propagator” we mean the projection operator in Eq. (3.28)
where K̂ and V̂ are the kinetic and potential energy operators, respectively, in the Hamiltonian
in Eq. (3.91). K̂ and V̂ are definite (i.e. non-stochastic) in this procedure.

(1) Set the right-hand wave function to the true ground state wave function6 and set the
left-hand wave function to a random matrix of appropriate size.

ΦR ← Φ0 (3.95)

ΦL ← Φrand (3.96)

See Fig. 3.1.

(2) Because the left-hand wave function is not the ground state, “equilibrate” it to the
ground state by performing projection on it for a duration of τeq.

ΦL ← B(τeq, 0)Φrand (3.97)

See Fig. 3.2.

(3) Forward-propagate the right-hand wave function for a duration of (τ − ε) and forward-
propagate the left-hand wave function by ε.

ΦR ← B(τ − ε, 0)Φ0 (3.98)

ΦL ← B(τ, τ − ε)ΦL (3.99)

See Fig. 3.3.

6 Because this is a non-interacting system, the ground state is a single Slater determinant.
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Figure 3.2: Step 2 in the procedure.

Figure 3.3: Step 3 in the procedure.

(4) Calculate the first small-time unequal-time Green’s function as follows (see Fig. 3.4):

• Calculate the equal-time Green’s function G(τ−ε) for |φL〉 and |φR〉 using Eq. (3.89).

• Calculate the product of propagators B(τ, τ − ε) by multiplying all the propagators
between time τ and τ − ε.

• Calculate the unequal-time Green’s function G(τ, τ − ε) by

G(τ, τ − ε) = B(τ, τ − ε)G(τ − ε) . (3.100)

(5) Back-propagate |φR〉 by an interval ε and forward-propagate |φL〉 also by an interval ε.

ΦR ← B−1(τ − ε, τ − 2ε)ΦR (3.101)

ΦL ← B(τ − ε, τ − 2ε)ΦL (3.102)

See Fig. 3.5.

(6) Calculate the next small-time unequal-time Green’s function as follows (see Fig. 3.6):

• Calculate the equal-time Green’s functionG(τ−2ε) for |φL〉 and |φR〉 using Eq. (3.89).

• Calculate the product of propagators B(τ, τ − ε) by multiplying all the propagators
between time τ − ε and τ − 2ε.

Figure 3.4: Step 4 in the procedure. Note that in these figures, operations on the left-hand
wave function is in red and those on the right-hand wave function in blue.
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Figure 3.5: Step 5 in the procedure.

Figure 3.6: Step 6 in the procedure.

• Calculate the unequal-time Green’s function G(τ − ε, τ − 2ε) by

G(τ − ε, τ − 2ε) = B(τ − ε, τ − 2ε)G(τ − 2ε) . (3.103)

(7) Repeat steps 5 to 6 for (L− 2) more times.

(8) Calculate the desired unequal-time Green’s function as

G(τ, 0) = G(τ, τ − ε)G(τ − ε, τ − 2ε) . . . G(ε, 0) (3.104)

Note that if we store all the “small-time” unequal-time Green’s functions G
(

(n+1)ε, nε
)

then we can also calculate G(τ ′, 0) for 0 < τ ′ < τ and τ ′ = L′ε by the matrix product of L′

small-time unequal-time Green’s functions.

Results

Fig. 3.7 shows the percentage error of the unequal-time Green’s function 〈c†`↑(τ)cj↑(0)〉
(where τ = 2 is constant) as a function of ε for various pairs of (`, j) using the procedure
outlined above. The physical system here is a 7-site one-dimensional lattice with 3 spin-↑
and 3 spin-↓ electrons and t = 1 and V = 1. Because the on-diagonal pairs (` = j) in general
always have smaller errors than the off-diagonal pairs (` 6= j), we show them on separate
graphs. From Fig. 3.7, we conclude that the procedure above gives very good agreement
with exact result if we choose a small enough value of ε e.g. ε = 0.1.

On the other hand, Fig. 3.8 plots the imaginary-time Green’s function 〈c†`↑(τ)cj↑(0)〉
against the imaginary time τ to compare the results obtained with the exact formula
in Eq. (1.114) against those obtained by the procedure above. The system is the same as
that of Fig. 3.7. Once again we have separate plots for on- and off-diagonal pairs of (`, j).
We conclude that the procedure gives very good agreement with exact results.
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Figure 3.7: The percentage error as a function of ε for on- and off-diagonal elements with
τ = 2. For example, 0.015 means 1.5% error.
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Figure 3.8: Comparison of exact (crosses) and projection (circles) calculations of the unequal-

time Green’s function 〈c†`↑(τ)cj↑(0)〉 against τ for various values of (`, j). The dashed lines
connect the points of the exact results and are intended to guide the eye.
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Figure 3.9: Step 1 in the procedure.

Figure 3.10: Step 2 in the procedure.

3.11.2 Hubbard interaction

The procedure to obtain a single value of
〈η(τbp)

j |Â|φ(τ)
j 〉

〈η(τbp)
j |φ(τ)

j 〉
in Eq. (3.84) is almost identical

to that in Section 3.11.1. The only difference is that

• ΦL is initialized to a trial wave function ΦT.

• ΦR is initialized to be a walker Φ
(τ)
j .

• The (stochastic) propagators used in the procedure are those that make up the
remembered path in Eq. (3.81).

Every time back-propagation is carried out, this procedure is performed for every walker in

the stored population {|φ(τ)
j 〉 , w

(τ)
j } in step 1 on page 41.

Before each CPMC run, we have to decide the maximum τ we want in 〈c†iσ(τ)cjσ(0)〉.
This will be called in τbp in the following description. We also have to choose an imaginary-
time interval τeq to equilibrate the trial wave function and the interval ε to stabilize the
product. The total “length” of the path (i.e. the number of propagators we have to remember)
corresponds to τbp + τeq.

(1) Set the right-hand wave function to the the walker |φ(τ)
j 〉 and set the left-hand wave

function to the trial wave function |φT〉.

ΦR ← Φ
(τ)
j (3.105)

ΦL ← ΦT (3.106)

See Fig. 3.9.

(2) Because the left-hand wave function is not the ground state, “equilibrate” it to the
ground state by performing projection on it for a duration of τeq.

ΦL ← B(τeq, 0)Φrand (3.107)

See Fig. 3.10.

(3) Forward-propagate the right-hand wave function for a duration of (τbp− ε) and forward-
propagate the left-hand wave function by ε.

ΦR ← B(τbp − ε, 0)Φ0 (3.108)

ΦL ← B(τbp, τbp − ε)ΦL (3.109)

See Fig. 3.11.
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Figure 3.11: Step 3 in the procedure.

Figure 3.12: Step 4 in the procedure.

(4) Calculate the first small-time unequal-time Green’s function as follows (see Fig. 3.12):

• Calculate the equal-time Green’s functionG(τbp−ε) for |φL〉 and |φR〉 using Eq. (3.89).

• Calculate the product of propagators B(τbp, τbp − ε) by multiplying all the propa-
gators between time τbp and τbp − ε.

• Calculate the unequal-time Green’s function G(τbp, τbp − ε) by

G(τbp, τbp − ε) = B(τbp, τbp − ε)G(τbp − ε) . (3.110)

(5) Back-propagate |φR〉 by an interval ε and forward-propagate |φL〉 also by an interval ε.

ΦR ← B−1(τbp − ε, τbp − 2ε)ΦR (3.111)

ΦL ← B(τbp − ε, τbp − 2ε)ΦL (3.112)

See Fig. 3.13.

(6) Calculate the next small-time unequal-time Green’s function as follows (see Fig. 3.14):

• Calculate the equal-time Green’s function G(τbp − 2ε) for |φL〉 and |φR〉 us-
ing Eq. (3.89).

Figure 3.13: Step 5 in the procedure.
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Figure 3.14: Step 6 in the procedure.

• Calculate the product of propagators B(τbp, τbp − ε) by multiplying all the propa-
gators between time τbp − ε and τbp − 2ε.

• Calculate the unequal-time Green’s function G(τbp − ε, τbp − 2ε) by

G(τbp − ε, τbp − 2ε) = B(τbp − ε, τbp − 2ε)G(τbp − 2ε) . (3.113)

(7) Repeat steps 5 to 6 for (L− 2) more times.

(8) Calculate the desired unequal-time Green’s function as

G(τbp, 0) = G(τbp, τbp − ε)G(τbp − ε, τbp − 2ε) . . . G(ε, 0) (3.114)

Note that if we store all “small-time” unequal-time Green’s functions we can also
calculate G(τ ′, 0) for τ ′ < τbp and τ ′ = L′ε by multiplying L′ small-time unequal-time
Green’s functions.

3.12 Other implementation issues

3.12.1 Population control

As the random walk proceeds, some walkers may accumulate very large weights while
some will have very small weights. These different weights cause a loss of sampling efficiency
because either the algorithm will spend a disproportionate amount of time keeping track of
walkers that contribute little to the energy estimate, or the population might perish. Thus
a branching scheme is used to “redistribute” the weights without changing the statistical
distribution. Walkers with large weights are replicated and walkers with small weights are
eliminated with some probability. There are various ways to do branching and the present
code uses a simple “combing” method as discussed in Calandra Buonaura and Sorella [37].

3.12.2 Gram-Schmidt reorthonormalization

Repeated multiplications of BK/2 and BV to a Slater determinant in Eq. (3.48) lead to

numerical instability, such that round-off errors dominate and |φ(τ)
j 〉 represents an unfaithful

propagation of |φ(0)
j 〉. This instability is controlled by periodically applying the modified

Gram-Schmidt orthonormalization to each Slater determinant. For each walker |φ〉, we
factor its corresponding matrix as Φ = UDV where D is a diagonal matrix, R is an upper



3.13. Algorithm 53

triangular matrix and U is a matrix whose columns are orthonormal vectors representing
the re-orthonormalized single-particle orbitals. After this factorization, Φ is replaced by U
and the corresponding overlap OT by OT/Det(DV ). With importance sampling, only the
information in U is relevant and D and V can be discarded.

An important point to note here is that this re-orthonormalization does not change the
value of any physical observables. See Appendix J for details.

3.13 Algorithm

Finally, we are in a position to state the ground-state CMPC algorithm which contains
the back-propagation algorithm in Sections 3.10.2 and 3.11.2. For convenience, in this section,
we will use the notation

OT ≡ 〈φT|φ(τ)
j 〉 (3.115)

to denote the overlap of a walker |φ(τ)
j 〉 with the trial wave function |φT〉.

(1) For each walker, specify its initial state. Here we use the trial wave function ΦT as the
initial state and assign the weight w and overlap OT each a value of unity.

(2) If the weight of a walker is nonzero, propagate it via BK/2 as follows:

(a) Perform the matrix-matrix multiplication

Φ′ = BK/2Φ (3.116)

(recall the convention that BK/2 denotes the matrix of B̂K/2) and compute the new
overlap as

O′T = OT(φ′) . (3.117)

(b) If O′T 6= 0, update the walker, weight and OT as

Φ← Φ′ , w ← wO′T/OT , OT ← O′T . (3.118)

(3) If the walker’s weight is still nonzero, propagate it via BV( #”x ) as follows

(a) Compute the inverse of the overlap matrix

Oinv =
(

Φ†TΦ
)−1

. (3.119)

(b) For each auxiliary field xi, do the following:

(i) Compute p̃(xi). See Eq. (3.59).

(ii) Sample xi and update the weight as

w ← wN(φ
(τ)
j,i ) . (3.120)

See Eq. (3.60).

(iii) If the weight of the walker is still not zero, propagate the walker by performing
the matrix multiplication

Φ′ = bV(xi) Φ . (3.121)

and then update OT and Oinv.
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(4) Repeat step 2.

(5) Multiply the walker’s weight by a normalization factor:

w ← w e∆τET (3.122)

where ET is an estimate of the ground state energy E0.

(6) Repeat steps 2 to 5 for all walkers in the population. This forms one step of the random
walk.

(7) If the population of walkers has achieved a steady-state distribution, periodically make
measurements of relevant observables using the procedure for back-propagation in Sec-
tions 3.10.2 and 3.11.2.

(8) Periodically adjust the population of walkers. (See Section 3.12.1.)

(9) Periodically re-orthonormalize the columns of the matrices Φ representing the walkers.
(See Section 3.12.2.)

(10) Repeat this process until an adequate number of measurements have been collected.

(11) Compute the final average of the measurements of the desired observables and the
standard error of this average and then stop.

3.14 Results

Fig. 3.15 compare the CPMC (red with error bars) and ED (blue) calculations of the
imaginary-time Green’s function 〈ciσ(τ)cjσ(0)〉 against τ from τ = 0 to τ = 2 for two pairs
of (i, j). The system is a one-dimensional 5-site lattice with 3 spin-↑ and 3 spin-↓ electrons
with U = 4. Although the results are shown for only two pairs of (i, j), the other pairs show
the same behavior. The agreement with exact results is excellent.
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Figure 3.15: Comparison of the ED (blue) and CPMC (red with error bars) calculations of the
on- and off-diagonal imaginary-time Green’s function vs τ . Note that in the lower figure, the

vertical axis indicates (−1)× ln
[
−〈ci↑(τ)c†(i+1)↑(0)〉

]
because the values of 〈ci↑(τ)c†(i+1)↑(0)〉

are negative





Chapter 4

Applications

In this chapter, we will show some applications the imaginary-time Green’s function.

4.1 Application of the imaginary-time Green’s function

In the ground state (i.e. at zero temperature), the dynamical structure factor S
Â,B̂

(ω) is
related to the imaginary-time correlation function by

〈Â(τ)B̂(0)〉 =

∫ ∞
−∞

dω e−τωS
Â,B̂

(ω) (4.1)

where 〈Â(τ)B̂(0)〉 in turn can be expressed in terms of unequal-time or equal-time Green’s
functions using Wick’s theorem. An example with the magnetic structure factor is given
in Section 4.3. The dynamical structure factor is directly related to quantities that can be
measured in experiments. An example with neutron scattering is given in Section 4.2.

Eq. (4.1) is a two-way street. If we have the dynamical structure factor S(ω) from
experiments, we can use Eq. (4.1) to compute the imaginary-time correlation functions
and compare to those obtained in theoretical calculations. Conversely, given theoretical
calculations of the correlation functions, we can predict the physical properties via the
dynamical structure factor. However, the latter procedure requires performing an inverse
Laplace transform. There are a number of methods to do this inversion, also known as the
analytic continuation problem,1 which are beyond the scope of this thesis. These inversion
methods are non-trivial and demand high-quality imaginary-time data which would not be
possible without an approach that can control the sign problem, such as the constrained
path approximation used in this thesis.

4.2 Neutron scattering by a crystal

In this section, we will show that the neutron scattering cross section is directly propor-
tional to the dynamical structure factor. This section has been adapted from Ashcroft and
Mermin [28, pp. 790-2] and Simon [40, pp. 141-4].

1 There is a sizable literature devoted to this topic. An established and popular method is the Maximum
Entropy method as described by Jarrell and Gubernatis [38], a highly recommended reading because of its
comprehensive discussion of the relationship between real- and imaginary-time quantities. A more recent
inversion method by Vitali et al. [39] uses genetic algorithms.
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Let a neutron with momentum p be scattered by a crystal and emerge with momentum
p′ and that before the scattering, the ions are in an eigenstate of the crystal Hamiltonian
with energy Ei and that after the scattering the ions are in an eigenstate of the crystal
Hamiltonian with energy Ef . We describe the initial and final states and energies of the
composite neutron-ion system as follows:

Before scattering:

Ψi =
1√
V

eip·r/~Φi (4.2)

εi = Ei +
p2

2Mn
. (4.3)

After scattering:

Ψf =
1√
V

eip′·r/~Φf (4.4)

εf = Ef +
p′2

2Mn
, (4.5)

where we have assumed the wave functions Ψi and Ψj are separable as a product of a neutron
wave function and ion wave function.

It is convenient to define variables ω and q in terms of the neutron energy gain and
momentum transfer:

~ω =
p′2

2Mn
− p2

2M
(4.6)

~q = p′ − p (4.7)

It is usually a very good approximation to assume that the scattering potential is the
sum over the scattering potentials of the individual atoms in the system so that we can
describe the neutron-ion interaction by:

U(r) =
2π~2a

M

∑
j

δ(r−Rj) . (4.8)

The rate at which neutron scatters from p to p′ by virtue of its interaction with the
ions is given by Fermi’s “golden rule,” a standard result from first-order time-dependent
perturbation theory:

P =
∑
f

2π

~
δ(εf − εi)

∣∣∣〈Ψi|Û |Ψf 〉
∣∣∣2 . (4.9)

Using Eqs. (4.2), (4.4) and (4.6):

P =
∑
f

2π

~
δ(Ef − Ei + ~ω)

∣∣∣∣∫ dr
1

V
ei(p′−p)·r 〈Φi|Û(r)|Φf 〉

∣∣∣∣2 . (4.10)

Using Eqs. (4.7) and (4.8):

P =
∑
f

2π

~
δ(Ef − Ei + ~ω)

∣∣∣∣∣∣
∫

dr
1

V
eiq·r

〈
Φi

∣∣∣∣∣∣ 2π~2a

M

∑
j

δ(r−Rj)

∣∣∣∣∣∣Φf

〉∣∣∣∣∣∣
2

. (4.11)
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Integrating over r gives

P =
(2π~)3a2

(MV )2

∑
f

δ(Ef − Ei + ~ω)

∣∣∣∣∣∣
∑
j

〈
Φi

∣∣ eiq·Rj
∣∣Φf

〉∣∣∣∣∣∣
2

. (4.12)

The neutron scattering cross section is proportional to the dynamical structure factor, defined
as

Si(q, ω) =

 1

N

∑
f

δ

(
Ef − Ei

~
+ ω

) ∣∣∣∣∣∣
∑
j

〈
Φi

∣∣ eiq·Rj
∣∣Φf

〉∣∣∣∣∣∣
2 . (4.13)

We note that only the index i remains because f has been summed over. To evaluate Si(q, ω),
we use the following integral representation of the delta function:

δ

(
Ef − Ei

~
+ ω

)
=

∫ ∞
−∞

dt

2π
exp

[
it

(
Ef − Ei

~
+ ω

)]
. (4.14)

Eq. (4.13) then becomes

Si(q, ω) =
1

N

∑
f

∫ ∞
−∞

dt

2π
eiωt exp

[
it
Ef − Ei

~

] ∣∣∣∣∣∣
∑
j

〈
Φi

∣∣ eiq·Rj
∣∣Φf

〉∣∣∣∣∣∣
2

. (4.15)

We can explicitly write out the square:

Si(q, ω) =
1

N

∑
f

∫ ∞
−∞

dt

2π
eiωt

∑
j

〈
Φi

∣∣ eiq·Rj
∣∣Φf

〉
exp

[
it
Ef − Ei

~

]∑
m

〈
Φf

∣∣ e−iq·Rm
∣∣Φi

〉
.

(4.16)

We now use the property that

〈Φf |Â(t)|Φi〉 = exp

[
it

(Ef − Ei)
~

]
〈Φf |Â|Φi〉 (4.17)

where t is the real time (not the hopping amplitude) and Â(t) is the time-dependent operator
Â in the Heisenberg picture.2 Plugging this into Eq. (4.16), we obtain

Si(q, ω) =
1

N

∑
f

∫ ∞
−∞

dt

2π
eiωt

∑
j

〈
Φi

∣∣ eiq·Rj
∣∣Φf

〉∑
m

〈
Φf

∣∣∣ e−iq·Rm(t)
∣∣∣Φi

〉
. (4.18)

2 To see why this is true, use the definition of the time evolution of an operator in the Heisenberg picture:

〈Φf |Â(t)|Φi〉 = 〈Φf |eiĤt/~Âe−iĤt/~|Φi〉

Acting with e−iĤt/~ to the right and eiĤt/~ to the left, we have

〈Φf |Â(t)|Φi〉 = eiEf t/~e−iEit/~ 〈Φf |Â|Φi〉

which is the RHS of Eq. (4.17).
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Exchange the summations and recognize the completeness relation:

Si(q, ω) =
1

N

∫ ∞
−∞

dt

2π
eiωt

∑
j,m

〈Φi| eiq·Rj

∑
f

|Φf 〉 〈Φf |

 e−iq·Rm(t) |Φi〉 (4.19)

=
1

N

∫ ∞
−∞

dt

2π
eiωt

∑
j,m

〈Φi| eiq·Rje−iq·Rm(t) |Φi〉 . (4.20)

Assume the displacement of the ions about their lattice position is small. Let Ri be the lattice
vector of the i-th ion (so Ri is constant) and xi the ion’s displacement so that Ri = Ri + xi.
Then

S(q, ω) =
1

N

∫ ∞
−∞

dt

2π
eiωteiq·(Rj−Rm)

∑
j,m

〈Φ0| eiq·(xj−xm(t)) |Φ0〉 , (4.21)

where we have replaced the subscript i by 0 to indicate that we are only working in the
ground state.

For the sake of completeness, the full relation between the neutron scattering cross section
and the dynamical structure factor is

dσ

dΩ dE
=
p′

p

Na2

~
S(q, ω) (4.22)

where S(q, ω) is entirely determined by the crystal itself without reference to any properties
of the neutrons.

4.3 Magnetic structure factor

In this section, we will show how to obtain an imaginary-time quantity, namely the
magnetic structure factor, from the equal-time Green’s function. The derivations here have
been adapted from Santos [36, p. 43].

First, we give some background discussion. Recall that Wick’s theorem allows us to write

〈c†x1
cx2c

†
x3
cx4〉 #”

X
= 〈c†x1

cx2〉 #”
X
〈c†x3

cx4〉 #”
X

+ 〈c†x1
cx4〉 #”

X
〈cx2c

†
x3
〉 #”
X

(4.23)

for a fixed auxiliary-field path
#”

X where x1, x2, x3 and x4 are basis space-spin states.
In the notation of second quantization, the operator Ŝi that gives the spin in all 3

directions (x, y and z) on site i is

Ŝi =
1

2

∑
σ,σ̄=↑,↓

c†iσσσσ̄ciσ̄ (4.24)

where, by convention, we have set ~ = 1 and the components of σ are the familiar Pauli
matrices:

σ = (σx, σy, σz) . (4.25)
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For concreteness, we will explicitly write down each component of Ŝi in Eq. (4.24):

Ŝxi =
1

2
(c†i↑ci↓ + c†i↓ci↑) (4.26)

Ŝyi = − i

2
(c†i↑ci↓ − c

†
i↓ci↑) (4.27)

Ŝzi =
1

2
(c†i↑ci↑ − c

†
i↓ci↓) . (4.28)

Define
Ŝi = (Ŝxi , Ŝ

y
i , Ŝ

z
i ) (4.29)

and the dot product in the usual way:

Ŝi · Ŝj = Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j . (4.30)

The static magnetic structure factor for a one-dimensional lattice of M sites is defined as

S(q) =
1

M

M∑
i,j=1

eiq(i−j) 〈Ŝi · Ŝj〉 (4.31)

=
1

M

M∑
i,j=1

eiq(i−j)
[
〈Ŝxi Ŝxj 〉+ 〈Ŝyi Ŝ

y
j 〉+ 〈Ŝzi Ŝzj 〉

]
(4.32)

where due to periodic boundary condition, q =
(

2π
M

)
n for n = 0, 1, . . . ,M . Because ~ = 1, q

is both a momentum and a wave vector. We emphasize that the three expectations 〈Ŝxi Ŝxj 〉,
〈Ŝyi Ŝ

y
j 〉 and 〈Ŝzi Ŝzj 〉 must be calculated for each auxiliary field path (i.e. for each walker in

each iteration) and averaged over all paths before plugging into Eq. (4.32).
Now we will show how to use Wick’s theorem in Eq. (4.23) to write these quantities in

terms of Green’s function for each auxiliary field path
#”

X. For example,

〈Ŝxi Ŝxj 〉 =
1

4

〈
(c†i↑ci↓ + c†i↓ci↑)(c

†
j↑cj↓ + c†j↓cj↑)

〉
(4.33)

=
1

4

[
〈c†i↑ci↓c

†
j↑cj↓〉+ 〈c†i↑ci↓c

†
j↓c
†
j↑〉+ 〈c†i↓ci↑c

†
j↑cj↓〉+ 〈c†i↓ci↑c

†
j↓cj↑〉

]
(4.34)

=
1

4

{[
〈c†i↑ci↓〉 〈c

†
j↑cj↓〉+ 〈c†i↑cj↓〉 〈ci↓c

†
j↑〉
]

+
[
〈c†i↑ci↓〉 〈c

†
j↓cj↑〉+ 〈c†i↑cj↑〉 〈ci↓c

†
j↓〉
]

[
〈c†i↓ci↑〉 〈c

†
j↑cj↓〉+ 〈c†i↓cj↓〉 〈ci↑c

†
j↑〉
]

+
[
〈c†i↓ci↑〉 〈c

†
j↓cj↑〉+ 〈c†i↓cj↑〉 〈ci↑c

†
j↓〉
]}

.

(4.35)

Recall from the discussion in Section 2.2.2 that all correlations involving a spin-up and
spin-down operator are zero. That leaves us with only the last term in the second and third
square brackets:

〈Ŝxi Ŝxj 〉 #”
X

=
1

4

[
〈c†i↑cj↑〉 〈ci↓c

†
j↑〉+ 〈c†i↓cj↓〉 〈ci↓c

†
j↑〉
]

(4.36)

=
1

4

[
G̃↑ijG

↓
ij + G̃↓ijG

↑
ij

]
#”
X

(4.37)

where the matrices G and G̃ are related by

G̃ = I −G (4.38)
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and we have inserted a subscript to remind the reader that this equality applies to only a
single auxiliary-field path

#”

X. Similarly, we find

〈Ŝyi Ŝ
y
j 〉 #”
X

= −1

4

〈
(c†i↑ci↓ − c

†
i↓ci↑)(c

†
j↑cj↓ − c

†
j↓cj↑)

〉
(4.39)

=
1

4

[
G̃↑ijG

↓
ij + G̃↓ijG

↑
ij

]
#”
X
. (4.40)

We make a quick digression to note that here the yy-correlation 〈Ŝyi Ŝ
y
j 〉 is the same as

the xx-correlation. The reason is that correlations between spin-up and spin-down second-
quantized operators such as 〈ci↑c†j↓〉 are all zero, which in turn happens because the Hubbard
Hamiltonian, as it stands, does not flip the spin of electrons (cf. Section 2.2.2). This equality
of xx- and yy-correlations will still hold if we add a magnetic field in the z direction because
the new Hamiltonian, which has an extra term proportional to (n↑ − n↓), still does not flip
the spins. However, if we add a magnetic field in, say, the x-direction, this equality will not
hold anymore3 because the Hamiltonian will now contain terms like c†i↑ci↓ which flip the
spins.

Returning to the main discussion, the last term in Eq. (4.32) can be worked out in a
similar way:

〈Ŝzi Ŝzj 〉 =
1

4

〈
(c†i↑ci↑ − c

†
i↓ci↓)(c

†
j↑cj↑ − c

†
j↓cj↓)

〉
(4.41)

=
1

4

[
G̃↑iiG̃

↑
jj + G̃↑ijG

↑
ij − G̃

↑
iiG̃
↓
jj − G̃

↓
iiG̃
↑
jj + G̃↓iiG̃

↓
jj + G̃↓ijG

↓
ij

]
. (4.42)

Shown in Fig. 4.1 is the graph of S(q) vs. q for a 37-site one-dimensional lattice at
half-filling (19 spin-↑ and 19 spin-↓) with U = 4.0. The peak at q = π means that the
dominant wave vector is

2π

λ
= π (4.43)

or

λ = 2 (4.44)

Because we have set the lattice spacing to 1, this means that the spin pattern repeats every
other lattice site as shown in Fig. 4.2 and implies that the Hubbard model in one dimension
at half filling is an antiferromagnet, consistent with the literature.

3 A more physical way to see why the equality does not hold is by noting that a magnetic field in the
x-direction will break the equivalence between the x- and y-direction in space.
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Figure 4.1: The magnetic structure factor for a 37-site one-dimensional lattice at half-filling
(19 spin-↑ and 19 spin-↓) with U = 4.0.

Figure 4.2: The antiferromagnetic ordering of spin-up (red) and spin-down (blue) electrons
corresponding to q = π on adjacent lattice sites in one dimension.





Appendix A

Hubbard-Stratonovich
transformation

This appendix proves and discusses the general Hubbard-Stratonovich transformation
and has been adapted from Hirsch [17] and Santos [36]. The transformation changes the
exponential of the square of any operator Â into an exponential of the operator itself:

e
1
2
Â2

=

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
e−xÂ (A.1)

at the price of an auxiliary field x, which is just a scalar that obeys a Gaussian distribution
and couples linearly to Â. This result can be easily seen by writing the exponential on the
RHS as a series:

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
e−xÂ =

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)[ ∞∑
n=0

1

n!

(
−xÂ

)n]
. (A.2)

To quote my math professor Jerry Shurman, “if you have a sum and an integral, you must
exchange them.”

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
e−xÂ =

∞∑
n=0

1

n!

[∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)(
−xÂ

)n]
. (A.3)

For n odd, the integrand in the square bracket is an odd function and the symmetric integral
evaluates to zero. Thus, only terms with even n remain:

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
e−xÂ =

∞∑
n=0

1

(2n)!

[∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
x2n

]
Â2n . (A.4)
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Consulting the formula for even-powered Gaussian integrals in Griffiths [41, backcover], we
have ∫ ∞

−∞
dx

(
e−

1
2
x2

√
2π

)
e−xÂ =

∞∑
n=0

1

���(2n)!

[
���(2n)!

n!

(
1√
2

)2n
]
Â2n (A.5)

=
∞∑
n=0

1

n!

(
Â2

2

)n
(A.6)

∫ ∞
−∞

dx

(
e−

1
2
x2

√
2π

)
e−xÂ = e

1
2
Â2

(A.7)

as desired.
The HS transformation has been widely used to study models in which the two-body

interaction on each site i has the form

V̂i = Uni↑ni↓ (A.8)

like the Hubbard model. However, before a transformation of this kind can be applied to

eĤi , squares of operators must appear in the argument of the exponential. There are many
ways to transform the interaction in Eq. (A.8) to produce the square of an operator.1 This
operator can be either the local magnetic spin (ni↑ − ni↓) or the local charge (ni↑ + ni↓) on
each site:

ni↑ni↓ = −1

2
(ni↑ − ni↓)2 +

1

2
(ni↑ + ni↓) , (A.9)

ni↑ni↓ = +
1

2
(ni↑ + ni↓)

2 − 1

2
(ni↑ + ni↓) , (A.10)

ni↑ni↓ = +
1

4
(ni↑ + ni↓)

2 − 1

4
(ni↑ − ni↓)2 , (A.11)

and can be proved easily by noting that the number operators are idempotent i.e. n2
i↑ = ni↑.

We can make a few immediate observations about Eqs. (A.9) to (A.11) in relation to the HS
transformation:

(i) An auxiliary field will be introduced for each squared operator appearing on the RHS’s
above. Thus Eqs. (A.9) and (A.10) introduce a single auxiliary field while Eq. (A.11)
introduces two auxiliary fields for each lattice site.

(ii) The auxiliary field will couple to the local magnetic spin and local charge when Eq. (A.9)
and Eq. (A.10) are used, respectively.

(iii) Because the second terms on the RHS’s of Eqs. (A.9) and (A.10) are not squares, they
do not produce auxiliary fields and hence require no sampling in QMC and are usually
combined into the non-interacting term in the Hamiltonian.

Eq. (A.1) can now be used with Eqs. (A.9) to (A.11) to eliminate the interactions. For
example, if Eq. (A.10) is used then

e−∆τVi = eU∆τ(ni↑+ni↓)/2e−U∆τ(ni↑+ni↓)
2/2 (A.12)

e−∆τVi = eU∆τ(ni↑+ni↓)/2

∫
dxi

(
e−

1
2
xi

2

√
2π

)
e
√
−U∆τ xi(ni↑+ni↓) (A.13)

1 Although this appendix only deals with Hubbard-like V̂ , the writing of V̂ as a sum of squares of one-body
operators can be done for any general two-body interactions. See Appendix K for details.
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where we have used Eq. (A.1) by letting

Â =
√
−∆τU(ni↑ + ni↓) . (A.14)

Eq. (A.13) is called the continuous Gaussian charge transformation because the auxiliary
field xi obeys a continuous Gaussian distribution and the squared operator is the local
charge. Note that from Eq. (A.14), this transformation will produce complex quantities if U
is positive.

Since the fermion occupation number can only take the values 0 or 1, Hirsch [17] pointed
out that an Ising-like auxiliary field that takes only two values xi = ±1 is sufficient to
eliminate the fermion interaction. The transformation he proposed is called the discrete
Hirsch spin transformation

e−∆τUni↑ni↓ =
1

2
e−∆τU(ni↑+ni↓)/2

∑
xi=±1

exiγ(ni↑−ni↓) (A.15)

where cosh γ = e∆τU/2. The transformation is so named because the auxiliary field xi on
each site is discrete and couples to the magnetic spin ni↑ − ni↓. For a proof of Eq. (A.15),
please refer to Appendix B. Hirsch [17] also invented a slightly different form of the HS
transformation, called the discrete Hirsch charge transformation:

e−∆τUn↑n↓ =
1

2
e−∆τU(ni↑+ni↓−1)/2

∑
xi=±1

eγxi(ni↑+ni↓−1) (A.16)

where cosh γ = e−∆τU/2. Because the arccosh function is complex-valued for real inputs with
magnitude less than 1, if one wants to work with only real quantities, Eq. (A.15) would
be used for the repulsive Hubbard model (U > 0) and Eq. (A.16) for the attractive model
(U < 0).

We want to mention in passing an alternative [42, p. 110] to Eq. (A.1) that could be
useful when one wants a HS transformation with discrete auxiliary fields for a general
non-Hubbard-like interaction (i.e. not of the form in Eq. (A.8):

e∆τWÔ2
=

∑
`=±1,±2

γ(`)e
√

∆τWη(`)Ô +O(∆τ4) (A.17)

where the coefficients are

γ(±1) = 1 +
√

6/3 γ(±2) = 1−
√

6/3 (A.18)

and

η(±1) = ±
√

2(3−
√

6) η(±2) = ±
√

2(3 +
√

6) . (A.19)

Because the per-time-step error is O(∆τ4), the error over the whole projection path is
O(∆τ3) (see Eq. (3.30)) which is not a problem because the Trotter-Suzuki decomposition
in Section 3.4 already introduces an error of order O(∆τ2).
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Hirsh transformations

This section proves the discrete Hirsch spin transformation as stated in Eq. (3.32),

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

p(xi) eγxi(ni↑−ni↓) , (B.1)

where γ is given by cosh(γ) = exp(∆τU/2) and p(xi) = 1/2 for xi = ±1.

First, let Ĥ = (n↑ − n↓). We want an expression for eαĤ
2
, which contains the square of

Ĥ, in terms of eβĤ , which contains Ĥ itself.
We make an elementary observation that if an arbitrary quantum operator Ĥ has

eigenvalues 0, 1 and −1 with corresponding eigenstates |01〉,|02〉 (degenerate), |1〉 and |−1〉,
its square Ĥ2 must have only eigenvalues 0 with degenerate eigenstates |01〉 and |02〉 and
1 with degenerate eigenstates |1〉 and |−1〉. Also, if an operator Ĥ has eigenvalue a with

eigenstate |a〉 then eĤ has eigenvalue ea because:

eĤ |a〉 =

(
1 + Ĥ +

Ĥ2

2
+ . . .

)
|a〉 (B.2)

= |a〉+ a |a〉+
a2

2
|a〉+ . . . (B.3)

= ea |a〉 . (B.4)

Using the completeness relation H =
∑

i i |i〉 〈i| where i are the eigenvalues, we obtain:

eαĤ
2

= |01〉 〈01|+ |02〉 〈02|+ eα( |1〉 〈1|+ |−1〉 〈−1| ) (B.5)

eβĤ = |01〉 〈01|+ |02〉 〈02|+ eβ |1〉 〈1|+ e−β |−1〉 〈−1| (B.6)

e−βĤ = |01〉 〈01|+ |02〉 〈02|+ e−β |1〉 〈1|+ eβ |−1〉 〈−1| . (B.7)

This is easy to see by noting that e0 = 1. Add Eqs. (B.6) and (B.7) and multiply by 1/2:

1

2

(
eβĤ + e−βĤ

)
= |01〉 〈01|+ |02〉 〈02|+ +

1

2

(
eβ + e−β

)
(|1〉 〈1|+ |−1〉 〈−1|) . (B.8)

For Eq. (B.8) to equal Eq. (B.5), we need

eα =
1

2

(
eβ + e−β

)
= coshβ . (B.9)
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Thus if we require coshβ = eα then

eαĤ
2

=
1

2

(
eβĤ + e−βĤ

)
. (B.10)

Now let’s look at the product of particles on the same lattice site n↑n↓. Because

(n↑ − n↓)2 = (n↑)
2 + (n↓)

2 − 2n↑n↓ number operators commute (B.11)

= n↑ + n↓ − 2n↑n↓ , number operators are idempotent (B.12)

we have:

n↑n↓ =
(n↑ + n↓)

2
−

(n↑ − n↓)2

2
. (B.13)

Thus
e−∆τUn↑n↓ = e−∆τU(n↑+n↓)/2 e∆τU (n↑−n↓)2/2 . (B.14)

Because there are only four possible states on each lattice site, namely |·〉, |↑〉, |↓〉 and |↑↓〉,
the operator (n↑ − n↓) can only have three eigenvalues 0, 1 and −1. Letting Ĥ = (n↑ − n↓)
and α = ∆τU

2 in Eq. (B.10), we have1

e∆τU (n↑−n↓)2/2 =
1

2

(
eγ(n↑−n↓) + e−γ(n↑−n↓)

)
, (B.22)

provided that

cosh γ = e∆τU/2 (B.23)

1 As a side note, the form of the Hirsch spin transformation in Eq. (B.1) is not the same as that in the
original paper by Hirsch [17]:

e−∆τUn↑n↓ =
1

2
e−∆τU(n↑+n↓)/2

∑
x=±1

e2ax(n↑−n↓) (B.15)

where the constant a satisfies:
tanh2 a = tanh(∆τU/4) (B.16)

However, Eq. (B.15) can be proved to be equivalent to Eq. (A.15) by noting that cosh(2a) = e∆τU/2

implies Eq. (B.16) by simple manipulations with hyperbolic functions, and hence 2a in Eq. (B.15) is the same
as γ in Eq. (A.15). It is easy to show that

cosh2 a =
1 + e∆τU/2

2
(B.17)

sinh2 a =
e∆τU/2 − 1

2
: (B.18)

Together, Eqs. (B.17) and (B.18) give

tanh2 a = tanh(∆τU/4) (B.19)

For completeness, the original form of the Hirsch charge transformation in Eq. (A.16) is

e−∆τUn↑n↓ =
1

2
e−∆τU(n↑+n↓)/2

∑
x=±1

e2bx(n↑+n↓−1) (B.20)

where
tanh2 b = − tanh(∆τU/4) (B.21)
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Substituting Eq. (B.22) into Eq. (B.14), we obtain the desired expression:

e−∆τUn↑n↓ =
1

2
e−∆τU(n↑+n↓)/2

(
eγ(n↑−n↓) + e−γ(n↑−n↓)

)
(B.24)

=
1

2
e−∆τU(n↑+n↓)/2

∑
x=±1

exγ(n↑−n↓) , (B.25)

which is the expression that we set out to prove.





Appendix C

Overlap of two Slater determinants

In this appendix, we want to prove the formula for the overlap of two Slater determinants
as stated in Eq. (3.8):

〈φ|φ′〉 = Det
(

Φ†Φ′
)
. (C.1)

Suppose we have two Slater determinants

|φ′〉 =

N∏
m=1

(
L∑
`=1

B`mc
†
`

)
|0〉 (C.2)

=

∑
`1

B`1,1c
†
`1

∑
`2

B`2,2c
†
`2

 . . .

∑
`N

B`N ,Nc
†
`N

 |0〉 (C.3)

|φ〉 =

N∏
m=1

(
L∑
k=1

Akmc
†
k

)
|0〉 (C.4)

=

∑
k1

Ak1,1c
†
k1

∑
k2

Ak2,2c
†
k2

 . . .

∑
kN

AkN ,Nc
†
kN

 |0〉 . (C.5)

The adjoint of |φ〉 is

〈φ| = 〈0|

∑
kN

A†N,kN ckN

∑
kN−1

A†(N−1),kN−1
ckN−1

 . . .

∑
k1

A†1,k1
ck1

 . (C.6)

with the sums in |φ〉 applied in reverse order. We want to prove

〈φ|φ′〉 = Det(A†B) . (C.7)

By taking the inner product of Eqs. (C.3) and (C.6), the LHS of Eq. (C.7) is

〈φ|φ′〉 =
∑

{`1,...,`N ,k1,...,kN}

A†1,k1
. . . A†N,kNB`1,1 . . . B`N ,N 〈0| ckN . . . ck1c

†
`1
. . . c†`N |0〉 (C.8)
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where the sum is over all the possible combinations of {`1, . . . , `N , k1, . . . , kN}. Note that
each term in this sum is non-zero only when there is no repetition among the k1, . . . , kN
because otherwise, we’ll have 2 applications of the same annihilation operator cj in a row,
which certainly gives zero. Furthermore, the `1, . . . , `N must be some permutation of the
k1, . . . , kN because otherwise, some annihilation operator will try to remove an orbital that
has not previously been created by a creation operator, which also gives zero. Note that if all
the `i’s are some permutation of the kj ’s then the inner product 〈0| ckN . . . ck1c

†
`1
. . . c†`N |0〉

is ±1 depending on the permutation P .

〈A|B〉 =
∑
P

(−1)P
∑

distinct k1,...,kN

A†1,k1
. . . A†N,kNBP (k1),1 . . . BP (kN ),N (C.9)

=
∑
P

(−1)P
L∑

distinct k1,...,kN

A†1,k1
. . . A†N,kNBk1,P (1) . . . BkN ,P (N) (C.10)

The second equality follows because {P (1), . . . , P (N)} and {P (k1), . . . , P (kN )} are both
permutations of a set of N elements. The outer sum is over all the permutations P and the
inner sum has no repetition among the k1, . . . , kN .

On the other hand, the RHS of Eq. (C.7) is

Det(A†B) =
∑
P

(−1)P (A†B)1,P (1) . . . (A
†B)N,P (N) (C.11)

=
∑
P

(−1)P

∑
k1

A†1,k1
Bk1,P (1)

 . . .

∑
kN

A†N,kNBkN ,P (N)

 (C.12)

=
∑

k1,...,kN
permutations P

(−1)P
(
A†1,k1

Bk1,P (1)

)
. . .
(
A†N,kNBkN ,P (N)

)
. (C.13)

All the indices in Eq. (C.13) must be distinct because if ki = kj = k for some term

(−1)P
(
A†i,kBk,P (i)

)
. . .
(
A†j,kBk,P (j)

)
. . . (C.14)

in the summation, then it can easily be seen that there exists another term

(−1)Q
(
A†i,kBk,Q(i)

)
. . .
(
A†j,kBk,Q(j)

)
. . . (C.15)

where the permutation Q satisfies Q(i) = P (j) and Q(j) = P (i). Because the permutations
Q and P have opposite signs,1 the two terms in Eqs. (C.14) and (C.15) cancel. Thus, all the
indices in Eq. (C.13) must be distinct.

Det(A†B) =
∑
P

(−1)P
L∑

distinct k1,...,kN

(
A†1,k1

Bk1,P (1)

)
. . .
(
A†N,kNBkN ,P (N)

)
. (C.16)

Because the RHS’s of Eqs. (C.10) and (C.16) are identical, Eq. (C.7) has been proved.

1 Let Q(i) = P (j) = x and Q(j) = P (i) = y Without loss of generality, suppose x < y. It takes (y− x− 1)
transpositions to bring x to y’s position and then it takes (y − x− 1− 1) transpositions to bring y back to
x’s original position for a total of 2(y − x− 1)− 1 transpositions, an odd number.



Appendix D

Thouless theorem

We want to prove Thouless1 theorem as stated in Eqs. (3.9) to (3.12). Suppose we have
a Slater determinant

|φ〉 ≡ ϕ̂†1ϕ̂
†
2 · · · ϕ̂

†
N |0〉 (D.1)

where the operator

ϕ̂†m ≡
∑
i

c†i ϕi,m (D.2)

creates an electron in the m-th single-particle orbital. Thouless theorem states that the
operation of the exponential of a one body operator

B̂ = exp

 M∑
ij

c†iTijcj

 (D.3)

simply leads to another Slater determinant:

B̂ |φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂

′ †
M |0〉 ≡ |φ

′〉 (D.4)

where the operators are

φ̂′ †m =
∑
j

c†j Φ′jm (D.5)

like in Eq. (D.2) and the matrix Φ′ is related to Φ in a simple way:

Φ′ ≡ eTΦ (D.6)

where the matrix T is formed from elements Tij .
Let’s define a Slater determinant

|Ψ〉 =

N∏
i=1

 L∑
j=1

φjic
†
j

 |0〉 (D.7)

where we have N fermions described by a basis consisting of L states. In the case of the
Hubbard model, the basis states are chosen to be Wannier wave functions localized on each
lattice site. We must have

L ≥ N (D.8)

1 Fun fact: my advisor, Prof. Darrell Schroeter, attended Reed with Thouless’s daughter.
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due to the Pauli exclusion principle. All one-body operators in quantum mechanics have the
form

Ĥ =
L∑

i,j=1

Tijc
†
icj (D.9)

where L is the number of basis states. This can be viewed as a matrix multiplication

Ĥ =
(
c†1 c†2 . . . c†L

)
︸ ︷︷ ︸

#”c †

T


c1

c2

. . .
cL


︸ ︷︷ ︸

#”c

(D.10)

where T is a L× L Hermitian matrix. Since Ĥ is Hermitian,2 it puts a restriction on the
elements of T so that we can diagonalize T with a unitary matrix U

Ĥ = #”c †T #”c = #”c †U†︸ ︷︷ ︸
β†

DU #”c︸︷︷︸
β

(D.11)

where we have defined new vectors:

#”

β † = #”c †U† =⇒ β†` =
L∑
k

U †k`c
†
k . (D.12)

Note that the new operators β† and β obey the same anticommutation relations as the
original operators c and c†. For example:

{β†i , β
†
j} =

{∑
k

U †kic
†
k,
∑
`

U †`jc
†
`

}
(D.13)

=
∑
k`

U †kiU
†
`j{c

†
k, c
†
`} (D.14)

{β†i , β
†
j} = 0 since {c†k, c

†
`} = 0 . (D.15)

On the other hand,
#”

β † = #”c †U† implies

#”c † =
#”

β †U =⇒ c†j =
L∑
k

Ukjβ
†
k (D.16)

Thus, Eq. (D.11) allows us to rewrite Eq. (D.9) as

Ĥ =

L∑
m=1

Dmβ
†
mβm . (D.17)

2 If Ĥ is skew-Hermitian, this proof is still correct. However, the matrix D will have purely imaginary
diagonal elements instead of real diagonal elements.
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The action of the exponential of Ĥ on the Slater determinant |Ψ〉 is:

eĤ |Ψ〉 = exp

 L∑
i,j=1

Tijc
†
icj

 |Ψ〉 (D.18)

= exp

(
L∑

m=1

Dmβ
†
mβm

)
N∏
i=1

 L∑
j=1

φjic
†
j

 |0〉 (D.19)

= exp

(
L∑

m=1

Dmβ
†
mβm

)
N∏
i=1

 L∑
j,k=1

φjiUkjβ
†
k

 |0〉 using Eq. (D.16) . (D.20)

Define Q ≡ UΦ so that Qki = (UΦ)ki =
∑

j Ukjφji. Doing the j-sum in Eq. (D.20) gives

eĤ |Ψ〉 = exp

(
L∑

m=1

Dmβ
†
mβm

)
N∏
i=1

(
L∑
k=1

Qkiβ
†
k

)
|0〉 . (D.21)

(D.22)

Just an aside about the notation we will use later. Define:

N∏
i=1

(
L∑
k=1

Qkiβ
†
k

)
︸ ︷︷ ︸

Âi

=

(
L∑
k=1

Qk1β
†
k

)
︸ ︷︷ ︸

Â1

(
L∑
k=1

Qk2β
†
k

)
︸ ︷︷ ︸

Â2

. . .

(
L∑
k=1

QkNβ
†
k

)
︸ ︷︷ ︸

ÂN

. (D.23)

However, the sums should not have the same index of summation. Therefore let the index of
the first one be k1, that of the second one be k2 and so on up to kN because there are N
terms in the product in Eq. (D.23). Each index ki runs from 1 to L. Thus

N∏
i=1

(
L∑
k=1

Qkiβ
†
k1

)
=

 L∑
k1=1

Qk11β
†
k2

 L∑
k2=1

Qk22β
†
kN

 . . .

 L∑
kN=1

QkNNβ
†
k

 (D.24)

=

L∑
k1,k2,...,kN=1

Qk11Qk22 . . . QkNN β
†
k1
β†k2

. . . β†kN perform the multiplication .

(D.25)
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Put Eq. (D.25) into Eq. (D.21):

eĤ |Ψ〉 = exp

(
L∑

m=1

Dmβ
†
mβm

) L∑
k1,k2,...,kN=1

Qk11Qk22 . . . QkNN β
†
k1
β†k2

. . . β†kN

 |0〉
(D.26)

=
L∑

k1,k2,...,kN=1

[
exp

(
L∑

m=1

Dmβ
†
mβm

)
Qk11Qk22 . . . QkNN β

†
k1
β†k2

. . . β†kN

]
|0〉 (D.27)

=
L∑

k1,k2,...,kN=1

exp
(
D1β

†
1β1

)
exp

(
D2β

†
2β2

)
. . . exp

(
DLβ

†
LβL

)
︸ ︷︷ ︸

there are L of these

Qk11Qk22 . . . QkNN β†k1
β†k2

. . . β†kN︸ ︷︷ ︸
there are N of these

 |0〉 .
(D.28)

Note that in the above equation, because of the commutation relations in Eq. (D.15), there
can be no duplicates among the k1, k2, . . . , kN because if so then there will be multiple
applications of the creation operator β†ki to the ki-th lattice site which gives 0.

Further simplification is possible if we make use of condition in Eq. (D.8). This condition

implies that in each term of the above sum there has to be a exp
(
Djβ

†
jβj

)
that does not

have a corresponding β†j . Such a exp
(
Djβ

†
jβj

)
simply becomes eDj(0) which is just the

identity. The intuitive reason is that the particle number operator nj = β†jβj is acting on a

basis state j that has zero particle because there was no creation operator β†j that acted
on |0〉 to create a particle in the state j. The mathematical way to see this is that we can
write:3

exp
(
Diβ

†
i βi

)
= exp(Di)β

†
i βi + βiβ

†
i . (D.29)

3 Proof: Let Â = β†i βi and note that Â2 = Â. Then

eDiÂ = 1 +DiÂ+
D2
i Â

2

2
+
D3
i Â

3

6
+ . . .

= 1 +DiÂ+
D2
i Â

2
+
D3
i Â

6
+ . . .

= 1 + Â

(
Di +

D2
i

2
+
D3
i

6
+ . . .

)
= 1 + Â(eDi − 1)

= eDiÂ+ (1− Â)

= eDiβ†i βi + (1− β†i βi)

= eDiβ†i βi + βiβ
†
i since {βi, β†i } = 1
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Letting this act on |0〉 gives

exp
(
Diβ

†
i βi

)
|0〉 = exp(Di)β

†
i βi |0〉+ βiβ

†
i |0〉 (D.30)

= 0 + 1 |0〉 = 1 |0〉 . (D.31)

On the other hand, in each term in the sum there are also exp
(
Djβ

†
jβj

)
that has a

corresponding β†j .

exp
(
Diβ

†
i βi

)
β†i = exp(Di)β

†
i βiβ

†
i + βiβ

†
i β
†
i (D.32)

= exp(Di)β
†
i (1) + 0 (D.33)

= exp(Di)β
†
i . (D.34)

The end result is that after applying all the exp
(
Djβ

†
jβj

)
operators to the β†j operators,

there will be N factors of the form exp(Di)β
†
i and (L−N) factors of 1 which can be ignored

exp
(
D1β

†
1β1

)
exp

(
D2β

†
2β2

)
. . . exp

(
DLβ

†
LβL

)
Qk11Qk22 . . . QkNN β

†
k1
β†k2

. . . β†kN

(D.35)

= exp (Dk1) exp (Dk2) . . . exp (DkN )︸ ︷︷ ︸
N of these

1(1) . . . (1)︸ ︷︷ ︸
L−N of these

Qk11Qk22 . . . QkNN β
†
k1
β†k2

. . . β†kN (D.36)

= exp (Dk1) exp (Dk2) . . . exp (DkN )Qk11Qk22 . . . QkNN β
†
k1
β†k2

. . . β†kN . (D.37)

Note that in obtaining this result we do need the fact that there is no duplication among
the ki. Putting Eq. (D.37) into Eq. (D.28), we have

eĤ |Ψ〉 =

L∑
k1,k2,...,kN=1

[
exp (Dk1) exp (Dk2) . . . exp (DkN )Qk11Qk22 . . . QkNN β

†
k1
β†k2

. . . β†kN

]
|0〉 .

(D.38)
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Letting ki = ` allows for a more compact notation:

eĤ |Ψ〉 =

N∑
`=1

(
L∏

m=1

eD`Q`mβ
†
`

)
|0〉 (D.39)

=
L∏

m=1

(
N∑
`=1

eD`Q`mβ
†
`

)
|0〉 switch sum and product (D.40)

=
L∏

m=1

 N∑
k,`=1

eD`Q`mU
†
k`c
†
k

 |0〉 using Eq. (D.12) (D.41)

=
L∏

m=1

[
L∑
k=1

(
L∑
`=1

U †k`e
D`Q`m

)
c†k

]
|0〉 (D.42)

=

L∏
m=1

[
L∑
k=1

(
U †eDQ

)
km

c†k

]
|0〉 (D.43)

=
L∏

m=1

[
L∑
k=1

(
U †eDUΦ

)
km

c†k

]
|0〉 note Q ≡ UΦ (D.44)

=
L∏

m=1

[
L∑
k=1

(
eU
†DUΦ

)
km

c†k

]
|0〉 (D.45)

=

L∏
m=1

[
L∑
k=1

(eTΦ)kmc
†
k

]
|0〉 . (D.46)

By comparing Eq. (D.46) to the definition of a Slater determinant in Eq. (D.7), we conclude

that applying eĤ to a Slater determinant with coefficient matrix Φ gives another Slater
determinant with coefficient matrix eTΦ. Thus, we have proved Thouless theorem.

Interestingly, Rombouts et al. [43, p. 272] pointed out that the converse of Thouless
theorem is also true: if the effect of applying an operator with non-singular coefficient
matrix Q on a Slater determinant is to left-multiply (the coefficient matrix of) that Slater
determinant by Q, that operator has to be the exponential of a one-body operator.



Appendix E

Correctness of the
importance-sampled propagator

In this appendix, we will show that Eq. (3.56)

|φ̃(τ+∆τ)
j 〉 = e∆τ [ET−U(N↑+N↓)/2]

∑
#”x

P̃ ( #”x )B̂K/2B̂V( #”x )B̂K/2 |φ̃
(τ)
j 〉 , (E.1)

which describes an importance-sampled random walk, is mathematically equivalent to Eq. (3.48)

|φ(τ+∆τ)
j 〉 = e∆τ [ET−U(N↑+N↓)/2]

∑
#”x

P ( #”x )
[
B̂K/2B̂V( #”x )B̂K/2

]
|φ(τ)

j 〉 , (E.2)

which describes a regular random walk.
We first motivate and derive the modified propagator P̃gs. It must preserve the repre-

sentation of |Ψ0〉 in Eq. (3.53) which dictates that the walkers propagate in the following
manner

w
(τ+∆τ)
j

|φ(τ+∆τ)
j 〉

〈φT|φ(τ+∆τ)
j 〉

← w
(τ)
j

|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

. (E.3)

By bringing the term 〈φT|φ(τ+∆τ)
j 〉 in Eq. (E.3) to the RHS, we obtain an overlap ratio

〈φT|φ(τ+∆τ)
j 〉

〈φT|φ(τ)
j 〉

(E.4)

that must multiply the weight at every propagation step in order to preserve the representation
in Eq. (3.55). As an example of Eq. (E.4), propagation by the kinetic propagator looks like

w
(τ+∆τ)
j |φ(τ+∆τ)

j 〉 =

[
〈φT|B̂K/2|φ

(τ)
j 〉

〈φT|φ(τ)
j 〉

w
(τ)
j

]
B̂K/2 |φ

(τ)
j 〉 , (E.5)

which immediately gives the evolution of the weight under the kinetic propagator:

w
(τ+∆τ)
j ←

〈φT|B̂K/2|φ
(τ)
j 〉

〈φT|φ(τ)
j 〉

w
(τ)
j . (E.6)
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We will now focus on the two-body propagator which is evaluated stochastically and
is therefore affected in a non-trivial way by importance sampling. The application of the

Hirsch transformation in Eq. (3.32) to a walker |φ(τ)
j 〉 gives

w
(τ)
j,i |φ

(τ)
j,i 〉 = e−∆τUni↑ni↓

[
w

(τ)
j,i−1 |φ

(τ)
j,i−1〉

]
. (E.7)

The notation |φ(τ)
j,i−1〉 is explained in Eqs. (3.61) to (3.64). Because we must multiply by the

overlap ratio in Eq. (E.4), in every iteration over the lattice sites i, Eq. (E.7) becomes

w
(τ)
j,i |φ

(τ)
j,i 〉 = e−∆τU(ni↑+ni↓)/2

∑
xi=±1

p(xi) eγxi(ni↑−ni↓)

 〈φT|φ(τ)
j,i 〉

〈φT|φ(τ)
j,i−1〉

[w(τ)
j,i−1 |φ

(τ)
j,i−1〉

]
. (E.8)

Rearranging gives

w
(τ)
j,i |φ

(τ)
j,i 〉 = e−∆τU(ni↑+ni↓)/2w

(τ)
j,i−1

∑
xi=±1

p(xi) 〈φT|φ(τ)
j,i 〉

〈φT|φ(τ)
j,i−1〉

 eγxi(ni↑−ni↓) |φ(τ)
j,i−1〉 . (E.9)

Because |φ(τ)
j,i 〉 is the walker |φ(τ)

j,i−1〉 after propagation by b̂V(xi), we can rewrite it as

w
(τ)
j,i |φ

(τ)
j,i 〉 = e−∆τU(ni↑+ni↓)/2w

(τ)
j,i−1

∑
xi=±1

p(xi)〈φT |̂bV(xi)|φ(τ)
j,i−1〉

〈φT|φ(τ)
j,i−1〉

 eγxi(ni↑−ni↓) |φ(τ)
j,i−1〉 .

(E.10)

We can interpret the quantity in the square bracket as a discrete PDF:

p̃(xi) = p(xi)
〈φT |̂bV(xi)|φ(τ)

j,i−1〉

〈φT|φ(τ)
j,i−1〉

. (E.11)

Note that p̃(xi) modifies the original p(xi) in such a way that the choice of xi that leads to
a larger overlap with |φT〉 has higher probability. However, p̃(xi) is not normalized. We can
fix this by introducing a normalization factor

N(φ
(τ)
j,i ) =

1

2


〈
φT

∣∣∣ b̂V(xi = +1)
∣∣∣φ(τ)

j,i−1

〉
〈φT|φ(τ)

j,i−1〉
+

〈
φT

∣∣∣ b̂V(xi = −1)
∣∣∣φ(τ)

j,i−1

〉
〈φT|φ(τ)

j,i−1〉

 (E.12)

where b̂V(xi = +1) is the propagator where the auxiliary field has been chosen to be +1.

Multiplying and dividing by N(φ
(τ)
j,i ) gives:

w
(τ)
j,i |φ

(τ)
j,i 〉 = e−∆τU(ni↑+ni↓)/2w

(τ)
j,i−1N(φ

(τ)
j,i )

∑
xi=±1

 p̃(xi)

N(φ
(τ)
j,i )

 eγxi(ni↑−ni↓) |φ(τ)
j,i−1〉 . (E.13)
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It’s easy to verify that p̃(xi)

N(φ
(τ)
j,i )

is indeed a normalized (discrete) PDF which we can sample

from. We can tidy this up a little:

w
(τ)
j,i |φ

(τ)
j,i 〉 = WV,j,i

∑
xi=±1

 p̃(xi)

N(φ
(τ)
j,i )

 eγxi(ni↑−ni↓) |φ(τ)
j,i−1〉 (E.14)

where

WV,j,i = e−∆τU(ni↑+ni↓)/2w
(τ)
j,i−1N(φ

(τ)
j,i ) (E.15)

is the aggregate of all the scalar prefactors in Eq. (E.13). Eq. (E.15) very clearly shows the
evolution of the weight after propagation by the potential propagator on site i

w
(τ)
j,i ← e−∆τU(ni↑+ni↓)/2w

(τ)
j,i−1N(φ

(τ)
j,i ) . (E.16)

Eq. (E.14) gives the importance-sampled potential propagator over a single lattice site i.
The potential propagator over all sites, as expected, is just the product of the propagators

over all M sites:

w
(τ)
j,M |φ

(τ)
j,M 〉 = e−∆τV̂ w

(τ)
j,0 |φ

(τ)
j,0 〉 (E.17)

=
∏
i

e−∆τUni↑ni↓w
(τ)
j,0

[
|φ(τ)

j,0 〉
]

(E.18)

= WV,j

∑
#”x

P̃ ( #”x )B̂V( #”x ) |φ(τ)
j,0 〉 , (E.19)

where P̃ ( #”x ) is the normalized modified PDF over all sites

P̃ ( #”x ) =
∏
i

[
p̃(xi)

Ni(φ
(τ)
j )

]
(E.20)

and B̂V( #”x ) was defined in Eq. (3.49). The overall weight WV,j is simply the product of the
weights in Eq. (E.15) over all sites

WV,j =
∏
i

WV,i,j (E.21)

=
∏
i

e−∆τU(ni↑+ni↓)/2w
(τ)
j,i−1N(φ

(τ)
j,i ) (E.22)

= e−∆τU(N↑+N↓)/2
∏
i

N(φ
(τ)
j,i ) (E.23)

= e−∆τU(N↑+N↓)/2N
(τ)
j (E.24)

where, for convenience later, we have defined

N
(τ)
j =

∏
i

N(φ
(τ)
j,i ) . (E.25)

This gives us the evolution of the weight after propagation by the potential propagator on
all M sites:

w
(τ)
j,M ← e−∆τU(N↑+N↓)/2N

(τ)
j w

(τ)
j,0 . (E.26)
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Now we will prove the claim stated at the beginning of this appendix. Referring back
to Eq. (E.8), we see that the overlap ratios are implicit in the normalized PDF P̃ and we
can see that due to a “telescoping” product over the sites i, WV,j is:

WV,j = e−∆τU(N↑+N↓)/2
〈φT|φ(τ)

j,M 〉

〈φT|φ(τ)
j,0 〉

. (E.27)

Now we can write the importance-sampled ground-state projection operator:

w
(τ+∆τ)
j |φ(τ+∆τ)

j 〉 = Pgsw
(τ)
j |φ

(τ)
j 〉 (E.28)

= e∆τETe−∆τK̂/2e−∆τV̂ e−∆τK̂/2 (E.29)

=
∑

#”x

P̃ ( #”x )×

e∆τETw
(τ)
j

〈φT|B̂K/2|φ
(τ)
j,M 〉

〈φT|φ(τ)
j,M 〉

WV,j

〈φT|B̂K/2|φ
(τ)
j 〉

〈φT|φ(τ)
j 〉

×
×
[
B̂K/2B̂V( #”x )B̂K/2 |φ

(τ)
j 〉
]
. (E.30)

Using Eqs. (3.63), (3.64) and (E.20) gives

w
(τ+∆τ)
j |φ(τ+∆τ)

j 〉 =
∑

#”x

P̃ ( #”x )×

[
e∆τ [ET−U(N↑+N↓)/2]w

(τ)
j

〈φT|φ(τ+∆τ)
j 〉

�����〈φT|φ(τ)
j,M 〉

�����〈φT|φ(τ)
j,M 〉

�����〈φT|φ(τ)
j,0 〉

�����〈φT|φ(τ)
j,0 〉

〈φT|φ(τ)
j 〉

]
×

×
[
B̂K/2B̂V( #”x )B̂K/2 |φ

(τ)
j 〉
]

(E.31)

w
(τ+∆τ)
j |φ(τ+∆τ)

j 〉 =
∑

#”x

P̃ ( #”x )×

[
e∆τ [ET−U(N↑+N↓)/2] 〈φT|φ(τ+∆τ)

j 〉
〈φT|φ(τ)

j 〉
w

(τ)
j

]
×

×
[
B̂K/2B̂V( #”x )B̂K/2 |φ

(τ)
j 〉
]
. (E.32)

Moving the term 〈φT|φ(τ+∆τ)
j 〉 to the LHS:

w
(τ+∆τ)
j

|φ(τ+∆τ)
j 〉

〈φT|φ(τ+∆τ)
j 〉

. = e∆τ [ET−U(N↑+N↓)/2]
∑

#”x

P̃ ( #”x )B̂K/2B̂V( #”x )B̂K/2

|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

. (E.33)

Thus, the importance-sampled walkers and weights must evolve in the following manner:

|φ̃(τ+∆τ)
j 〉 = e∆τ [ET−U(N↑+N↓)/2]

∑
#”x

P̃ ( #”x )B̂K/2B̂V( #”x )B̂K/2 |φ̃
(τ)
j 〉 (E.34)

w
(τ+∆τ)
j ← e∆τ [ET−U(N↑+N↓)/2] 〈φT|φ(τ+∆τ)

j 〉
〈φT|φ(τ)

j 〉
w

(τ)
j , (E.35)

which shows that although the importance-sampled iteration is formally different, it is indeed
mathematically equivalent to the original iteration in Eq. (3.48).

In our CPMC implementation, we simply multiply all the weights by the prefactor
e∆τ [ET−U(N↑+N↓)/2] at the start of every iteration because it is essentially independent of
what goes on inside the iteration. The overlap ratio is updated every time a walker is acted
on by a propagator.
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Equal-time Green’s function

In this appendix we will prove a simple formula for calculating the equal-time Green’s
function for any two Slater determinants

〈cic†j〉 =
〈P |cic†j |Q〉
〈P |Q〉

. (F.1)

By “equal-time,” we mean that there are no time evolution operators sandwiched between
ci and c†j . Along the way, we will also prove Eq. (3.73):

〈c†jσciσ〉 ≡
〈φT|c†jσciσ|φ〉
〈φT|φ〉

=
[
Φσ [ (Φσ

T)†Φσ ]−1(Φσ
T)†
]
ij
. (F.2)

First we’ll prove that
Det(M) = eTr(lnM) . (F.3)

Since we only work with matrices, according to Higham [44, p. 17] we can always find the
logarithm of M i.e. a matrix A such that eA = M . With the new matrix A we can easily
prove Eq. (F.3):

Det(eA) = Det[exp(P−1DP )] diagonalize A (F.4)

= Det
[
P−1eDP

]
(F.5)

= Det(eD) cyclic invariance of trace (F.6)

= eD11eD22 . . . eDnn since D is diagonal (F.7)

= eD11+D22+···+Dnn (F.8)

= eTrD (F.9)

= eTrA since trace is basis independent . (F.10)

Eq. (F.3) then implies that
ln(DetM) = Tr(lnM) . (F.11)

Now suppose the two aforementioned Slater determinants are

|Q〉 =
N∏
m=1

(
L∑
`=1

Q`mc
†
`

)
|0〉 (F.12)

|P 〉 =

N∏
m=1

(
L∑
k=1

Pkmc
†
k

)
|0〉 , (F.13)
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Our first step is to calculate the following quantity:

G̃ij =
〈P |c†jci|Q〉
〈P |Q〉

. (F.14)

We can replace c†jci with the second-quantized operator Ô whose matrix elements are

Omn = δjmδni (F.15)

because

c†jci =

L∑
mn

δjmδnic
†
mcn (F.16)

=
∑
mn

Omnc
†
mcn (F.17)

= Ô . (F.18)

Next we note that

∂

∂η
ln 〈P |eηÔ|Q〉 =

∂
∂η 〈P |e

ηÔ|Q〉

〈P |eηÔ|Q〉
chain rule (F.19)

=
〈P |Ô eηÔ|Q〉
〈P |eηÔ|Q〉

(F.20)

and that letting η = 0 recovers Eq. (F.14)

∂

∂η
ln 〈P |eηÔ|Q〉

∣∣∣∣
η=0

=
〈P |Ô|Q〉
〈P |Q〉

(F.21)

because eηÔ
∣∣
η=0

is the identity. Thus we can write

G̃ij =
〈P |Ô|Q〉
〈P |Q〉

(F.22)

=
∂

∂η
ln 〈P |eηÔ|Q〉

∣∣∣∣
η=0

(F.23)

=
∂

∂η
ln Det

[
P †eηOQ

] ∣∣∣∣
η=0

. (F.24)
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To go from Eq. (F.23) to Eq. (F.24), we have use the result of Appendix D (Thouless
theorem)1and then Appendix C (overlap of two Slater determinants). Note the absence of a
hat on O in Eq. (F.24) because it is now a matrix with elements given in Eq. (F.15) and not
an operator. Now we can continue by using Eq. (F.11)

G̃ij =
∂

∂η
Tr ln

[
P †eηOQ

] ∣∣∣∣
η=0

(F.25)

= Tr

[
∂

∂η
ln
(
P †eηOQ

)] ∣∣∣∣
η=0

trace and derivative commute (F.26)

= Tr

[
P †O eηOQ

P †eηOQ

] ∣∣∣∣
η=0

chain rule (F.27)

= Tr

(
P †OQ

P †Q

)
letting η = 0 (F.28)

= Tr
[
(P †Q)−1P †OQ

]
cyclic invariance of trace (F.29)

= Tr
[
Q(P †Q)−1P †O

]
(F.30)

where the last equality follows from the invariance of the trace under cyclic permutation.
Then by letting N = Q(P †Q)−1P †, we can rewrite Eq. (F.30) as:

G̃ij = Tr(NO) =
∑
`

(NO)`` (F.31)

=
∑
k`

N`kOk` (F.32)

=
∑
k`

N`kδjkδ`i definition of the matrix O (F.33)

= Nij . (F.34)

In other words:

G̃ij =
〈P |c†jci|Q〉
〈P |Q〉

=
[
Q(P †Q)−1P †

]
ij
. (F.35)

Do note the different orderings of i and j on the left- and right-hand sides of the last equality.

1 An attentive reader will notice that the result in Appendix D were proved with the assumption that the
operator is Hermitian or skew-Hermitian which Ô, as defined in Eq. (F.15), clearly is not. However, Assaad
[42, p. 114] points out that because only terms of order η are relevant in the present proof, we can replace

eηÔ with eη(Ô+Ô†)/2eη(Ô−Ô†)/2 which is exact up to order η2 because

eη(Ô+Ô†)/2eη(Ô−Ô†)/2 =

[
1 +

η

2
(Ô + Ô†) +

1

2

η2

4
(Ô + Ô†)2 + . . .

] [
1 +

η

2
(Ô − Ô†) +

1

2

η2

4
(Ô − Ô†)2 + . . .

]
= 1 + η

[
Ô + Ô†

2
+
Ô − Ô†

2

]
+ η2

[
(Ô − Ô†)2

8
+

(Ô + Ô†)(Ô − Ô†)
4

+
(Ô + Ô†)2

8

]
+O(η3)

= 1 + ηÔ +
1

2
(ηÔ)2 +O(η3) = eηÔ +O(η3) .

This replacement allows us to use the result in Appendix D. The main idea here is that any operator can be
written as a sum of Hermitian and skew-Hermitian operators.
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Finally, the one-particle equal-time Green’s function between the two Slater determinants
|P 〉 and |Q〉 is then

Gij = 〈cic†j〉 =
〈P |cic†j |Q〉
〈P |Q〉

(F.36)

=
〈P |(δij − c†jci)|Q〉

〈P |Q〉
(F.37)

= δij − G̃ij . (F.38)

If we think of Gij and G̃ij , respectively, as the (i, j)-th elements of square matrices G and G̃
like we usually do in this thesis, the expression for G follows easily from Eq. (F.38):

G = I − G̃ (F.39)

where I is the identity matrix. This is a simple formula that allows us to calculate the
equal-time Green’s function for any two Slater determinants.
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Metropolis AFQMC

This appendix gives an overview of the original formulation of the auxiliary-field quantum
Monte Carlo (AFQMC) method by Sugiyama and Koonin [16]. This formulation uses
the Metropolis algorithm1 to generate a Metropolis-like random walk, unlike the open-
ended branching random walk formulation presented in the rest of the thesis. However, the
Metropolis formulation will come in handy when we discuss the computation of the unequal-
time Green’s function in Appendix H. This appendix has adapted materials from Purwanto
and Zhang [29] and Assaad [42].

We are looking to do projection for an imaginary-time interval of Λ = L∆τ . Let
` = 1, . . . , L be the index for the time slices. The total projection over the whole interval τ is

P̂Λ =
1∏

`=L

P̂(`) . (G.1)

where the index ` runs backward to indicate that earlier times appear to the right per
convention. The `-th step of this projection is

P̂(`) = F
∑
#”x (`)

B̂( #”x (`)) . (G.2)

Note that this is exactly the same as Eq. (3.41). The prefactor in Eq. (G.2) is

F =

(
1

2

)M
, (G.3)

and the operator is

B̂( #”x (`)) =
∏
σ=↑,↓

exp
(
−∆τ

2

∑
ij

c†iσKijcjσ

)
exp

(∑
i

c†iσV
σ
i (`)ciσ

)
exp

(
−∆τ

2

∑
ij

c†iσKijcjσ

)
(G.4)

where #”x (`) = (x1, x2, . . . , xM ) is a configuration of auxiliary fields over all M lattice sites,
Kij are matrix elements of the Hubbard kinetic operator K̂ and

V σ
i (`) = −U∆τ

2
+ s(σ)γx

(`)
i (G.5)

1 Here we use the term Metropolis algorithm to include both the original algorithm by Metropolis et al. [11]
and similar algorithms that use different acceptance/rejection probabilities, such as the heat-bath algorithm.
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where s(↑) = 1 and s(↓) = −1 and γ is given by cosh(γ) = exp(∆τU/2) like in Eq. (3.41).
Eq. (G.4) can be very easily derived from Eq. (3.32). Note the time-slice dependence of both
P̂ and B̂ through the auxiliary-field configuration #”x (`).

The total projection operator in Eq. (G.1) is

P̂Λ =
1∏

`=L

P̂(`) (G.6)

=
1∏

`=L

F∑
#”x (`)

B̂( #”x (`))

 (G.7)

= FL
∑

#”
X

B̂ #”
X(Λ, 0) (G.8)

where we have defined the configuration of auxiliary fields over all lattice sites and time
slices to be

#”

X =
{

#”x (L), #”x (L−1), . . . , #”x (1)
}

(G.9)

and the
#”

X-dependent propagator to be

B̂ #”
X(Λ, 0) = B̂( #”x (L))B̂( #”x (L−1)) . . . B̂( #”x (1)) . (G.10)

Similarly, the projection operator for an interval Θ = T∆τ from Λ to Λ + Θ is

P̂Θ = FT
∑

#”
Y

B̂ #”
Y (Θ + Λ,Λ) (G.11)

where
#”

Y is the corresponding auxiliary field configuration.
The ground-state expectation of an observable Â is

〈Â〉 =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

(G.12)

=
〈φT|P̂Θ Â P̂Λ|φT〉
〈φT|P̂Θ P̂Λ|φT〉

. (G.13)

Here Θ and Λ are imaginary-time intervals chosen to be large enough so as to project out the
ground state from the left- and right-hand side wave function, respectively. The denominator
of Eq. (G.13) is

〈φT|P̂Θ P̂Λ|φT〉 = 〈φT|
[
FT

∑
#”
Y

B̂ #”
Y (Λ + Θ,Λ)

][
FL
∑

#”
X

B̂ #”
X(Λ, 0)

]
|φT〉 (G.14)

= FL+T
∑
{ #”
Y ,

#”
X}

〈
φT

∣∣∣ B̂ #”
Y (Λ + Θ,Λ)B̂ #”

X(Λ, 0)
∣∣∣φT

〉
(G.15)

= FL+T
∑

#”
S

〈
φT

∣∣∣ B̂ #”
S (Λ + Θ,Λ)B̂ #”

S (Λ, 0)
∣∣∣φT

〉
(G.16)

where we think of the (L+ T )M -dimensional vector
#”

S = (
#”

Y ,
#”

X) as
#”

X concatenated to
#”

Y
and the propagators

B̂ #”
S (Λ + Θ,Λ) = B̂ #”

Y (Λ + Θ,Λ) (G.17)

B̂ #”
S (Λ, 0) = B̂ #”

X(Λ, 0) . (G.18)
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If we go further and define

B̂ #”
S (Λ + Θ, 0) = B̂ #”

Y (Λ + Θ,Λ)B̂ #”
X(Λ, 0) (G.19)

then

〈φT|P̂Θ P̂Λ|φT〉 = FL+T
∑

#”
S

〈
φT

∣∣∣ B̂ #”
S (Λ + Θ, 0)

∣∣∣φT

〉
(G.20)

= FL+T
∑

#”
S

〈
η #”
S

∣∣φ #”
S

〉
(G.21)

where we have defined the “left-hand” wave function to be

〈η #”
S | = 〈φT| B̂ #”

S (Λ + Θ,Λ) (G.22)

and the “right-hand” wave function to be

|φ #”
S 〉 = B̂ #”

S (Λ, 0) |φT〉 . (G.23)

The usefulness of this notation will be clear when we evaluate the numerator:

〈φT|P̂Θ Â P̂Λ|φT〉 = FL+T
∑
{ #”
Y ,

#”
X}

〈
φT

∣∣∣ B̂ #”
Y (Λ + Θ,Λ)Â B̂ #”

X(Λ, 0)
∣∣∣φT

〉
(G.24)

= FL+T
∑

#”
S

〈
φT

∣∣∣ B̂ #”
S (Λ + Θ,Λ)Â B̂ #”

S (Λ, 0)
∣∣∣φT

〉
(G.25)

= FL+T
∑

#”
S

〈
η #”
S

∣∣∣ Â ∣∣∣φ #”
S

〉
. (G.26)

Because the prefactor FL+T in the denominator and numerator cancel, we have

〈Â〉 =

∑
#”
S

〈
η #”
S

∣∣∣ Â ∣∣∣φ #”
S

〉
∑

#”
S

〈
η #”
S

∣∣φ #”
S

〉 . (G.27)

Multiply and divide the numerator by 〈φT|B̂ #”
S (Λ + Θ, 0)|φT〉:

〈Â〉 =

∑
#”
S

〈η #”
S |φ #”

S 〉

[
〈η #”
S |Â|φ #”

S 〉
〈η #”
S |φ #”

S 〉

]
∑

#”
S

〈η #”
S |φ #”

S 〉
(G.28)

=
∑

#”
S

P (
#”

S ) 〈Â〉 #”
S (G.29)

where we have defined a PDF for a particular configuration
#”

S to be

P (
#”

S ) =
〈η #”
S |φ #”

S 〉∑
#”
S

〈η #”
S |φ #”

S 〉
(G.30)
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and

〈Â〉 #”
S =

〈η #”
S |Â|φ #”

S 〉
〈η #”
S |φ #”

S 〉
. (G.31)

Eq. (G.29) can be evaluated by Monte Carlo.2 We sample configurations
#”

S from the
distribution P (

#”

S ) and calculate 〈Â〉 #”
S for each of those configurations. The arithmetic mean

of the results of those calculations is the Monte Carlo estimator. However, direct sampling
of P (

#”

S ) is practically impossible because it requires knowing normalization of P (
#”

S ) i.e.
the denominator of Eq. (G.30). This normalization can only be found by evaluating all the
2(L+T )M terms in the summation over

#”

S , clearly impractical in a realistic calculation.
The Metropolis algorithm allows for the sampling of PDF’s without knowing their

normalizations. An excellent discussion can be found in Kalos and Whitlock [26, pp. 64-74].
Basically, we start with some initial configuration

#”

S , propose a new configuration
#”

S ′ and
accept or reject

#”

S ′ with an appropriate probability that involves the ratio of P (
#”

S ′) to P (
#”

S ).
After obtaining enough samples

#”

S (with appropriate decorrelation time in between the
samples if necessary), we can compute 〈Â〉 #”

S ’s and the Monte Carlo estimator.

What has gone unsaid thus far is that the probability P (
#”

S ) is not positive for all
#”

S
because from Appendices C and D, we have

〈η #”
S |φ #”

S 〉 = 〈φT|B̂ #”
Y (Λ + Θ,Λ) B̂ #”

X(Λ, 0)|φT〉 (G.32)

= Det
[
(ΦT)†B #”

Y (Λ + Θ,Λ)B #”
X(Λ, 0)ΦT

]
, (G.33)

which is just the determinant of a product of matrices and there’s nothing a priori to prevent
this determinant from being negative.3

To recap, in this appendix, we have shown how a different interpretation of the Hirsch
transformation leads to an entirely different random walk i.e. that generated by the Metropolis
algorithm. The formulas for the Monte Carlo estimator stated in Eqs. (G.28) to (G.31) are
the takeaway from this appendix.

2 In fact, equations of this form are the basis of the Variational Monte Carlo method.
3 Note that Santos [36] discusses the sign problem in the context of a finite-temperature calculation

instead of a ground state calculation.



Appendix H

Unequal-time Green’s function

In this appendix we will show how to compute the unequal-time Green’s function in a
numerically stable way. The expected value of the the unequal-time Green’s function for the
ground state with a particular auxiliary-field path

#”

S and imaginary times τ1 > τ2 is defined
as

G(τ1, τ2)`j =
〈Ψ0|c`(τ1)c†j(τ2)|Ψ0〉

〈Ψ0|Ψ0〉
(H.1)

=
〈φT|P̂ . . . P̂ c` P̂ . . . P̂c†jP̂ . . . P̂|φ〉

〈φT|P̂ . . . P̂ P̂ . . . P̂|φ〉
, (H.2)

where P̂ is the ground state projection operator in Eq. (G.2). Then

G(τ1, τ2)`j =
〈φT|B̂ #”

S (Θ, τ1) c` B̂ #”
S (τ1, τ2)c†j B̂ #”

S (τ2, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
(H.3)

where the simplification to the last line happens in the same manner as the derivation leading
to Eq. (G.27). Note that in Eq. (H.3), there is an extra projection interval B̂ #”

S (Θ, τ1) on the
left hand side of c`(τ2) to project out the ground state from |φT〉. Because in the algorithm
used in this thesis, |φ〉 will be a walker from the equilibrated ensemble, there is no need for
such a projection interval for the right hand side wave function.

Our strategy of computing the unequal-time Green’s function is to manipulate Eq. (H.3)

so as to put the creation and annihilation operators c` and c†j next to each other, which will
allow us to use the formula for the equal-time Green’s function in Appendix F. Readers
are encouraged to read Appendix G before reading this appendix. This appendix is very
important to this thesis and elaborates on the discussion in Assaad [42, pp.123-5].

Let Ĥ be the Hamiltonian with coefficient matrix H:

Ĥ =
∑
ij

c†iHijcj (H.4)

= #”c †H #”c , (H.5)

where in the second equality, #”c † should be thought of as a row matrix of creation operators
and #”c a column matrix of annihilation operators.
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First let’s evaluate the following commutator:[
#”c †H #”c , cy

]
=
∑
ij

Hij

[
c†icj , cy

]
. (H.6)

Using the following identity for operators X̂,Ŷ and Ẑ:

[X̂Ŷ , Ẑ] = X̂[Ŷ , Ẑ] + [X̂, Ẑ]Ŷ , (H.7)

we have [
#”c †H #”c , cy

]
=
∑
ij

Hij

(
c†i [cj , cy] + [c†i , cy]cj

)
. (H.8)

Using the anticommutation relations for second-quantized operators, the commutators
in Eq. (H.8) are

[cj , cy] = −2cycj (H.9)

[c†i , cy] = δiy − 2cyc
†
i . (H.10)

Putting Eqs. (H.9) and (H.10) into Eq. (H.8):[
#”c †H #”c , cy

]
=
∑
ij

Hij

(
−2c†icycj + δiycj − 2cyc

†
icj

)
. (H.11)

Grouping the first and last term in the sum and recognizing the anticommutator of c†i and
cy: [

#”c †H #”c , cy

]
=
∑
ij

Hij

(
−2
{
c†i , cy

}
cj + δiycj

)
(H.12)

=
∑
ij

Hij (−2δiy + δiy) cj (H.13)[
#”c †H #”c , cy

]
= −

∑
j

Hyjcj . (H.14)

We now turn our attention to the time evolution of the annihilation operator cy:

cy(τ) = eτĤcy e−τĤ = eτ
#”c †H #”c cy e−τ

#”c †H #”c . (H.15)

Because #”c †H #”c is just a “scalar” (in the sense that it is a 1× 1 matrix), we can differenti-
ate Eq. (H.15) with respect to τ :

∂cy(τ)

∂τ
=
∂ [eτĤcy e−τĤ ]

∂τ
(H.16)

=

(
∂eτ

#”c †H #”c

∂τ

)
cy e−τ

#”c †H #”c + eτ
#”c †H #”c cy

(
∂e−τ

#”c †H #”c

∂τ

)
(H.17)

=
(

#”c †H #”c
)

eτ
#”c †H #”c cy e−τ

#”c †H #”c + eτ
#”c †H #”c cy

(
− #”c †H #”c

)
e−τ

#”c †H #”c .

(H.18)
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Because #”c †H #”c commutes with itself in the first term:

∂cy(τ)

∂τ
= eτ

#”c †H #”c
(

#”c †H #”c
)
cy e−τ

#”c †H #”c − eτ
#”c †H #”c cy

(
#”c †H #”c

)
e−τ

#”c †H #”c (H.19)

= eτ
#”c †H #”c

[
#”c †H #”c , cy

]
e−τ

#”c †H #”c . (H.20)

Now we can use Eq. (H.14) to write

∂cy(τ)

∂τ
= eτ

#”c †H #”c

−∑
j

Hyjcj

 e−τ
#”c †H #”c (H.21)

= −
∑
j

Hyj

(
eτ

#”c †H #”c cje
−τ #”c †H #”c

)
(H.22)

= −
∑
j

Hyjcj(τ) (H.23)

∂cy(τ)

∂τ
= − [H #”c (τ)]y . (H.24)

We can rewrite Eq. (H.24) as a matrix differential equation:

∂

∂τ
#”c (τ) = −H #”c (τ) , (H.25)

whose solution is

#”c (τ + ∆τ) = e−∆τH #”c (τ) . (H.26)

Element-wise, this means

cy(τ + ∆τ) =
(
e−∆τH #”c (τ)

)
y
. (H.27)

On the other hand, the time evolution of the operator cy in the Heisenberg picture is

cy(τ + ∆τ) = e∆τĤcy(τ)e−∆τĤ . (H.28)

Together, Eqs. (H.27) and (H.28) say

e∆τĤcy(τ)e−∆τĤ =
(
e−∆τH #”c (τ)

)
y

(H.29)

Creation operators obey a similar differential equation:1

∂

∂τ
#”c †(τ) = #”c †(τ)H , (H.30)

whose solution is

e−∆τĤc†y(τ)e∆τĤ =
(

#”c †(τ) e−∆τH
)
y
. (H.31)

1 An intermediate step is proving [ #”c †H #”c , c†y] =
∑
i c
†
iHiy.
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Now let the propagator that propagates a Slater determinant from imaginary time τ2 to
time τ1 for a fixed auxiliary-field path

#”

S (with τ1 > τ2) be

B̂ #”
S (τ1, τ2) =

1∏
`=L

e−∆τĤ( #”x (`)) , (H.32)

where ` indexes the time slices between τ1 and τ2 and #”x (`) is the collection of all auxiliary
fields over all sites at one particular time slice `. Technically, the equality in Eq. (H.32) is

not correct because as shown in Eq. (G.8), e−∆τĤ( #”x (`)) also has a scalar prefactor. However,
because we always calculate the unequal-time Green’s function as a ratio (Eq. (H.3)), that
prefactor will cancel out in the end. In Eq. (H.32), ` runs backward from L to 1 to denote
that earlier times appear to the right per convention. The inverse propagator that takes a
determinant from time τ1 back to time τ2 is

B̂−1
#”
S

(τ1, τ2) =

L∏
`=1

e∆τĤ( #”x (`)) , (H.33)

where the small-time operators are simply applied in reverse order. Note that for Eqs. (H.32)
and (H.33) to be inverses of each other, the auxiliary field configurations #”x (`) of each
time slice ` must match. This is automatically satisfied because we are dealing with a
single auxiliary-field configuration

#”

S here. In the notation of Eq. (3.48), the matrix version
of Eq. (H.32) is

B #”
S (τ1, τ2) =

1∏
`=L

B( #”x (`)) . (H.34)

Using the definition of propagators in Eqs. (H.32) and (H.33), we can compute the
following quantity

B̂−1
#”
S

(τ1, τ2)cyB̂ #”
S (τ1, τ2) =

[
e∆τĤ1 . . . e∆τĤL−1e∆τĤL

]
︸ ︷︷ ︸

L times

cy

[
e−∆τĤLe−∆τĤL−1 . . . e−∆τĤ1

]
︸ ︷︷ ︸

L times

(H.35)

= e∆τĤ1 . . . e∆τĤL−1

[
e∆τĤLcy e−∆τĤL

]
e−∆τĤL−1 . . . e−∆τĤ1 .

(H.36)

We can then use Eq. (H.29) to push the matrix e−∆τHL to the left of the operators:

B̂−1
#”
S

(τ1, τ2)cyB̂ #”
S (τ1, τ2) = e∆τĤ1 . . . e∆τĤL−1

[
e−∆τH #”c

]
y

e−∆τĤL−1 . . . e−∆τĤ1 (H.37)

=
∑
i

(
e−∆τHL

)
yi

e∆τĤ1 . . . e∆τĤL−2

[
e∆τĤL−1cie

−∆τĤL−1

]
e−∆τĤL−2 . . . e−∆τĤ1 (H.38)

=
∑
ij

(
e−∆τHL

)
yi

(
e−∆τHL−1

)
ij

e∆τĤ1 . . .
[
e∆τĤL−2cje

−∆τĤL−2

]
. . . e−∆τĤ1 . (H.39)
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By repeating the same trick many times, we eventually obtain

B̂−1
#”
S

(τ1, τ2)cyB̂ #”
S (τ1, τ2) =

∑
ij...mn

(
e−∆τHL

)
yi

(
e−∆τHL−1

)
ij
. . .
(
e−∆τH1

)
mn

cn . (H.40)

By recognizing multiplication, we can simplify the RHS to

B̂−1
#”
S

(τ1, τ2)cyB̂ #”
S (τ1, τ2) =

[(
e−∆τHL

)
. . .
(
e−∆τH1

)
#”c
]
y
. (H.41)

Using the definition of the propagator matrix in Eq. (H.34), the above equation can be
written more compactly as

B̂−1
#”
S

(τ1, τ2)cyB̂ #”
S (τ1, τ2) =

[
B #”
S (τ1, τ2) #”c (τ2)

]
y
, (H.42)

where B #”
S (τ1, τ2) is the matrix of the operator B̂ #”

S (τ1, τ2). By starting from Eq. (H.31) and
following a similar procedure,2 we can obtain:

B̂ #”
S (τ1, τ2)c†yB̂

−1
#”
S

(τ1, τ2) =
[

#”c †(τ1)B #”
S (τ1, τ2)

]
y

(H.43)

where the imaginary time ordering is τ1 > τ2.
From Eq. (H.3), the unequal-time Green’s function for the ground state over a particular

path
#”

S in auxiliary-field space is

G(τ1, τ2)`j =
〈φT|B̂ #”

S (Θ, τ1) c` B̂ #”
S (τ1, τ2)c†j B̂ #”

S (τ2, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
. (H.44)

where Θ > τ1 > τ2. We note that because these propagators use the same auxiliary-field
path

#”

S , we have

B̂ #”
S (Θ, τ1) = B̂ #”

S (Θ, τ2)B̂−1
#”
S

(τ1, τ2) , (H.45)

which says that going forward from τ1 to Θ is the same as going backward from τ1 to τ2 and
then from τ2 forward to Θ. Thus

G(τ1, τ2)`j =
〈φT|B̂ #”

S (Θ, τ2)B̂−1
#”
S

(τ1, τ2) c` B̂ #”
S (τ1, τ2)c†j B̂ #”

S (τ2, 0)|φ〉

〈φT|B̂ #”
S (Θ, 0)|φ〉

. (H.46)

Using Eq. (H.42), we have

G(τ1, τ2)`j =
〈φT|B̂ #”

S (Θ, τ2) [B(τ1, τ2) #”c ]` c
†
jB̂ #”

S (τ2, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
(H.47)

=
∑
x

[B(τ1, τ2)]`y
〈φT|B̂ #”

S (Θ, τ2)cy c
†
jB̂ #”

S (τ2, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
(H.48)

=
∑
x

[B(τ1, τ2)]`y
〈φL|cy c†j |φR〉
〈φL|φR〉

(H.49)

2 This time we push the matrices to the right of the operators instead of to the left.
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where we have defined

|φR〉 = B̂ #”
S (τ2, 0) |φ〉 (H.50)

〈φL| = 〈φT| B̂ #”
S (Θ, τ2) . (H.51)

The latter is obtained by

|φL〉 = B̂−1
#”
S

(Θ, τ2) |φT〉 . (H.52)

We recognize

G(τ2)yj =
〈φL|cy c†j |φR〉
〈φL|φT〉

(H.53)

as the equal-time Green’s function for two Slater determinants |φL〉 and |φR〉 which we know
how to calculate from Appendix F. We can then write

G(τ1, τ2)`j =
∑
x

[B(τ1, τ2)]`y G(τ2)yj . (H.54)

If we think of G(τ1, τ2)`j as the (`, j)-th element of a square matrix G(τ1, τ2) then Eq. (H.54)
is equivalent to

G(τ1, τ2) = B(τ1, τ2)G(τ2) (H.55)

Alternatively, if we use Eq. (H.43), we will arrive at a different expression:

G(τ1, τ2)`j =
〈φT|B̂ #”

S (Θ, τ1) c` B̂ #”
S (τ1, τ2)c†j B̂ #”

S (τ2, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
(H.56)

=
〈φT|B̂ #”

S (Θ, τ1) c` B̂ #”
S (τ1, τ2)c†j B̂

−1
#”
S

(τ1, τ2)B̂ #”
S (τ1, 0)|φ〉

〈φT|B̂ #”
S (Θ, 0)|φ〉

(H.57)

=
〈φT|B̂ #”

S (Θ, τ1) c` [ #”c †B(τ1, τ2)]jB̂ #”
S (τ1, 0)|φ〉

〈φT|B̂ #”
S (Θ, 0)|φ〉

(H.58)

=
∑
y

B(τ1, τ2)yj
〈φT|B̂ #”

S (Θ, τ1) c` c
†
yB̂ #”

S (τ1, 0)|φ〉
〈φT|B̂ #”

S (Θ, 0)|φ〉
(H.59)

=
∑
y

B(τ1, τ2)yj
〈φL|c`c†y|φR〉
〈φL|φR〉

(H.60)

where

〈φL| = 〈φT| B̂ #”
S (Θ, τ1) (H.61)

|φR〉 = B̂ #”
S (τ1, 0) |φ〉 . (H.62)
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Figure H.1: Comparisons of the accuracy of the calculation of the on-site unequal-time
Green’s function i.e. 〈Ψ0|ci↑(τ)c†i↑(0)|Ψ0〉 for a non-interacting one-dimensional 5-site lattice
with 3 spin-↑ and 3 spin-↓ electrons using three different methods: exact, stabilized and
unstabilized calculations. The vertical axis is in logarithmic scale.

Thus

G(τ1, τ2)`j =
∑
y

G(τ1)lyByj(τ1, τ2) (H.63)

G(τ1, τ2) = G(τ1)B(τ1, τ2) (H.64)

where B(τ1, τ2) is just a product of matrices that has been defined in Eq. (H.34). Eqs. (H.55)
and (H.64) are the desired results of this appendix: they express the unequal-time Green’s
function as a matrix product of one-body propagators and the equal-time Green’s function
for two Slater determinants.

However, as will be discussed in Appendix J, if we naively carry out Eqs. (H.55) and (H.64)
as written, the repeated multiplication of the short-time propagators to form B(τ1, τ2) will lead
to numerical instabilities. In Fig. H.1 we show a comparison of the accuracy of three different
ways of calculating the on-site unequal-time Green’s function i.e. 〈Ψ0|ci↑(τ)c†i↑(0)|Ψ0〉 vs the
imaginary time τ for a non-interacting one-dimensional 5-site lattice with 3 spin-↑ and 3
spin-↓ electrons. The three methods agree well up to τ = 8. The unstabilized calculation
described thus far gives results that diverge exponentially from the exact calculation while
the stabilized calculation (which we will describe below) agrees very well with the exact
calculation. Thus, we need a way to stabilize this procedure.
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First we show that the equal-time Green’s function is a projector.

G(τ)2 = G(τ)G(τ) (H.65)

=
[
I −Q(P †Q)−1P †

] [
I −Q(P †Q)−1P †

]
(H.66)

= I −Q(P †Q)−1P † −Q(P †Q)−1P † +
[
Q(P †Q)−1P †

] [
Q(P †Q)−1P †

]
(H.67)

= I − 2Q(P †Q)−1P † +Q(P †Q)−1
����
(P †Q)����

(P †Q)−1P † (H.68)

= I − 2Q(P †Q)−1P † +Q(P †Q)−1P † (H.69)

= I −Q(P †Q)−1P † (H.70)

G(τ)2 = G(τ) . (H.71)

Thus the equal-time Green’s function G(τ) is a projector. Next, we show a temporal
decomposition of the unequal-time Green’s function. Suppose τ1 > τ2 > τ3 then

G(τ1, τ3) = B #”
S (τ1, τ3)G(τ3) from Eq. (H.55) (H.72)

= B #”
S (τ1, τ3)G2(τ3) from Eq. (H.71) (H.73)

=
[
B #”
S (τ1, τ3)G(τ3)

]
G(τ3) (H.74)

= G(τ1, τ3)G(τ3) Eq. (H.55) again (H.75)

= G(τ1, τ3)B−1
#”
S

(τ2, τ3)[B #”
S (τ2, τ3)G(τ3)] insert forward and backward propagators

(H.76)

= G(τ1, τ3)B−1
#”
S

(τ2, τ3)G(τ2, τ3) Eq. (H.55) applied to the last 2 terms

(H.77)

= [G(τ1)B #”
S (τ1, τ3)]B−1

#”
S

(τ2, τ3)G(τ2, τ3) Eq. (H.64) applied to G(τ1, τ3)

(H.78)

= [G(τ1)B #”
S (τ1, τ2)]G(τ2, τ3) combine the two propagators (H.79)

= G(τ1, τ2)G(τ2, τ3) . Eq. (H.64) applied to the first 2 terms
(H.80)

Using this composition property, we can break up a large τ into a set of N smaller intervals
of length ε = (τ1 − τ2)/N so that

G(τ1, τ2) =

N−1∏
n=0

G(τ2 + (n+ 1)ε, τ2 + nε) . (H.81)

Applying Eq. (H.55) to each of the “small-time” Green’s functions G(τ2 + (n+ 1)ε, τ2 + nε),
we can write Eq. (H.81) more explicitly as

G(τ1, τ2) = B(τ1, τ1 − ε)G(τ1 − ε) . . . B(τ2 + 2ε, τ2 + ε)G(τ2 + ε)B(τ2 + ε, τ2)G(τ2) .
(H.82)

Because the equal-time Green’s functions are always well-behaved because of the numerical
stabilization discussed in Appendix J, we can ensure that G(τ1, τ2) is also well-behaved by
choosing ε to be small enough such that B(τ + ε, τ) is well-behaved.



Appendix I

Back-propagation

This appendix derives the back-propagation procedure and estimator as stated in Sec-
tion 3.10.2 and has adapted materials from Purwanto [45].

The back-propagated estimator in Eq. (3.80) is

〈Â〉bp =
〈φT|e−τbpĤÂ|Ψ0〉
〈φT|e−τbpĤ |Ψ0〉

(I.1)

= lim
τ→∞

〈ΨBP|Â|Ψ(τ)〉
〈ΨBP|Ψ(τ)〉

(I.2)

where
|Ψ(τ)〉 = e−τĤ |φT〉 (I.3)

is the regular “forward” walk at time τ and

〈ΨBP| = 〈φT| e−τbpĤ (I.4)

is the back-propagated wave function that we need an efficient way to calculate. Note that
to reduce clutter, we will freely drop the normalization factor eET from the propagators.

The back-propagation technique originates by carefully looking at the denominator
of Eq. (I.1). At any imaginary time τ , the ensemble of random walkers that have been

generated represents e−τĤ |φT〉. If we let the random walk proceed for another imaginary time

interval τbp then we will get a representation of e−τbpĤe−τĤ |φT〉. However, the Hermiticity

of e−τbpĤ allows us to apply it to the left on 〈φT|:

〈φT|e−τbpĤe−τĤ |φT〉 =

〈φT|
[
e−τbpĤe−τĤ |φT〉

]
if e−τbpĤ is applied to the right[

〈φT| e−τbpĤ
] [

e−τĤ |φT〉
]

if e−τbpĤ is applied to the left .

(I.5)
These two interpretations can give exactly the same result using the same auxiliary field

paths in e−τbpĤ if the walkers generated by the operation 〈φT| e−τbpĤ must be matched

one-to-one with the walkers representing e−τĤ |φT〉. The operators e−τbpĤ and e−τĤ belong
to different imaginary time segments and therefor have different paths.

First we will define some necessary notation. Consider a walker |φ(τ)
j 〉 at imaginary time

τ . An application of B̂K/2B̂V( #”x j)B̂K/2 evolve the walker into the next time step |φ(τ+∆τ)
j 〉.

We have included a subscript j in #”x to emphasize that these configurations are different
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for each walker. Because these operators together depend on the configurations at time τ
which are stochastically sampled, these operators are also stochastic. Let’s define the “total”
propagator at imaginary time τ to be

B̂
(τ)
j ≡ B̂K/2B̂V( #”x j)B̂K/2 (I.6)

and the time-ordered product of these stochastic operators that transforms the walker |φ(τ)
j 〉

into the walker |φ(τ ′)
j 〉 to be

B̂
(τ ′:τ)
j ≡ B̂(τ ′−∆τ)

j B̂
(τ ′−2∆τ)
j . . . B̂

(τ+∆τ)
j B̂

(τ)
j (I.7)

where we have assumed τ ′ > τ . Because of the one-to-one correspondence between #”x j and

B̂
(τ)
j , Eq. (I.7) also defines a “path” in auxiliary field space and relates the two walkers by:

|φ(τ ′)
j 〉 = B̂

(τ ′:τ)
j |φ(τ)

j 〉 . (I.8)

Similarly for the weight, we can define

F (τ) ≡ e∆τ [ET−U(N↑+N↓)/2] (I.9)

to be the factor that multiplies the weight at every iteration (even though it doesn’t actually
depend on τ) and

F (τ ′:τ) ≡ F (τ ′−∆τ)F (τ ′−2∆τ) . . .F (τ+∆τ)F (τ) . (I.10)

A single application of the propagator in Eq. (I.6) updates the weight according
to Eq. (E.35)

w
(τ+∆τ)
j =

〈φT|φ(τ+∆τ)
j 〉

〈φT|φ(τ)
j 〉

F (τ)w
(τ)
j . (I.11)

It is straightforward to show that

w
(τ ′)
j =

〈φT|φ(τ ′)
j 〉

〈φT|φ(τ)
j 〉
F (τ ′:τ)w

(τ)
j . (I.12)

Suppose our population of walkers represent the wave function at time τ as

|Ψ(τ)〉 =
∑
j

w
(τ)
j

|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

. (I.13)

From now on τ will be a constant. Now if we propagate these walkers further to time
τ ′ ≡ τ + τbp, the wave function will become

|Ψ(τ ′)〉 = e−τbpĤ |Ψ(τ)〉 =
∑
j

w
(τ ′)
j

|φ(τ ′)
j 〉

〈φT|φ(τ ′)
j 〉

. (I.14)

Now we will show that we can indeed reuse the same propagation paths (in the sense
of Eq. (I.7)) that took us from τ to τ ′ to obtain |φBP〉 in Eq. (I.4).

Let’s denote the walkers in the back-propagated population by |η(θ)
j 〉 and their weights

u
(τ)
j . The imaginary time θ ranges from 0 to τbp. The subscript j of a walker indicates the

path that is back-traversed by that walker i.e. the walker |φ(θ)
j 〉 back-traverses the auxiliary

field path B̂(τ ′:τ) that propagated the walker |φ(τ)
j 〉 into |φ(τ ′)

j 〉.
The backward walk is also importance-sampled. However, it has two compromises com-

pared to the normal “forward” walk:
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• The “guiding” wave function in the back-traversal of |φ(θ)
j 〉 is |φ(τ)

j 〉. This is clearly
less optimal than the trial wave function |φT〉 because |φT〉 is our best guess for the

ground state (and usually obtained with some preliminary calculations) while |φ(τ)
j 〉

is just an arbitrary walker. Nevertheless, because the statistical distribution of |φT〉
represents the ground-state wave function, the chance that |φT〉 is radically different
from the ground state wave function is also low. This also implies that each walker in

the backward walk has a different guiding wave function. However, using |φ(τ)
j 〉 as the

guiding wave function is not wrong because in the Monte Carlo representation of a
wave function in Eq. (3.55), the guiding wave function will cancel out.

• The sampling of auxiliary fields may not be optimal. What this means is that a
configuration #”x j that increases the overlap with the guiding wave function |φT〉 on the

forward walk might not lead to a larger overlap with the guiding wave function |φ(τ)
j 〉

on the backward walk.

According to Purwanto and Zhang [29, p. 056702-8], in practice, these two compromises
have not been a major problem.

As in the forward walk, the initial population are all identical to the trial wave function
i.e. for all j:

|η(θ=0)
j 〉 = |φT〉 (I.15)

u
(θ=0)
j = 〈φ(τ)

j |φT〉 . (I.16)

Note the interesting role reversal of the walker |φ(τ)
j 〉 and and the trial wave function |φT〉 in

the weight compared to Eq. (3.54). For concreteness, we’ll show the first few steps of the
backward walk for a walker. Note that τ is fixed and θ is changing.

Step 1 takes the walker from θ = 0 to θ = ∆τ and uses the last time step of the forward
path in Eq. (I.7)

|η(∆τ)
j 〉 =

[
B̂

(τ ′−∆τ)
j

]†
|φT〉 (I.17)

u
(∆τ)
j =

〈φ(τ)
j |
[
B̂

(τ ′−∆τ)
j

]†
|φT〉

〈φ(τ)
j |φT〉

[
F (τ ′−∆τ)

]∗
〈φ(τ)

j |φT〉 (I.18)

where ∗ denotes complex conjugation and † Hermitian conjugation. Recall that prop-

agation by
[
B̂j(τ

′ −∆τ)
]†

does not require sampling of auxiliary fields because we

are simply reusing the already-sampled auxiliary field configuration #”x
(τ ′−∆τ)
j at time

τ ′ −∆τ . This saves a lot of computational power because calculating the overlaps in
the sampling process requires evaluating the ratio of determinants of matrices for each
lattice site.

Step 2 takes the walker from θ = ∆τ to θ = 2∆τ and uses the second-to-last time step of
the forward path in Eq. (I.7)

|η(2∆τ)
j 〉 =

[
B̂

(τ ′−2∆τ)
j

]†
|η(∆τ)

j 〉 (I.19)

=
[
B̂

(τ ′−2∆τ)
j

]† [
B̂

(τ ′−∆τ)
j

]†
|φT〉 , (I.20)
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or with the notation of Eq. (I.7):

|η(2∆τ)
j 〉 =

[
B̂

(τ ′:τ ′−2∆τ)
j

]†
|φT〉 . (I.21)

Similarly, it’s straightforward to show that the weight evolves as

u
(2∆τ)
j =

〈φ(τ)
j |
[
B̂

(τ ′:τ ′−2∆τ)
j

]†
|φT〉

〈φ(τ)
j |φT〉

[
F (τ ′:τ ′−2∆τ)

]∗
〈φ(τ)

j |φT〉 (I.22)

If this propagation continues all the way to θ = τbp, the walker becomes

|η(τbp)
j 〉 =

[
B̂

(τ ′:τ)
j

]†
|φT〉 . (I.23)

(Recall that τ = τ ′ − τbp). The weight becomes

u
(τbp)
j =

〈φ(τ)
j |
[
B̂

(τ ′:τ ′−τbp)
j

]†
|φT〉

〈φ(τ)
j |φT〉

[
F (τ ′:τ ′−τbp)

]∗
. 〈φ(τ)

j |φT〉 . (I.24)

Collect the RHS together, taking complex conjugates as necessary:

u
(τbp)
j =

[
〈φT|B̂

(τ ′:τ ′−τbp)
j |φ(τ)

j 〉 F
(τ ′:τ ′−τbp)

〈φT|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

]∗
. (I.25)

Multiply and divide by 〈φT|φ(τ)
j 〉, recall that τ = τ ′ − τbp and rearrange:

u
(τbp)
j =

[
〈φT|B̂(τ ′:τ)

j |φ(τ)
j 〉 F

(τ ′:τ)

〈φT|φ(τ)
j 〉

〈φT|φ(τ)
j 〉︸ ︷︷ ︸

w
(τ ′)
j

〈φT|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

]∗
. (I.26)

We have used Eq. (I.12) to identify the weight w
(τ ′)
j of a forward-walk random walker at

time τ ′. We also recognize w
(τ)
j = 〈φT|φ(τ)

j 〉 in the denominator and leave 〈φT|φ(τ)
j 〉 in the

numerator alone. Thus

u
(τbp)
j =

[
w

(τ ′)
j

w
(τ)
j

〈φT|φ(τ)
j 〉

]∗
. (I.27)

A good thing about Eq. (I.27) is that it does not involve any weights at intermediate times
θ.

Together, Eqs. (I.23) and (I.27) are what we need to get a formula for an observable Â in
back-propagation. Because both the forward and backward walk have importance sampling,
both the left- and right-hand wave functions have the form in Eq. (3.55). The left-hand wave
function is ∑

j

w
(τ)
j

|φ(τ)
j 〉

〈φT|φ(τ)
j 〉

(I.28)
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and the right-hand wave function is

∑
j

u
(τbp)
j

|η(τbp)
j 〉

〈φ(τ)
j |η

(τbp)
j 〉

. (I.29)

Now we need to match each walker in the right-hand wave function with its counterpart in
the left-hand walk in Eq. (I.2).

The denominator of Eq. (I.2) is

denominator = 〈ΨBP|Ψ(τ)〉 (I.30)

=
∑
j

[
u

(τbp)
j

]∗
w

(τ)
j

〈η(τbp)
j |φ(τ)

j 〉[
〈φ(τ)

j |η
(τbp)
j 〉

]∗
〈φT|φ(τ)

j 〉
(I.31)

=
∑
j

[
w

(τ ′)
j

�
��w
(τ)
j

�����〈φT|φ(τ)
j 〉

]
�

��w
(τ)
j

������〈η(τbp)
j |φ(τ)

j 〉

������〈η(τbp)
j |φ(τ)

j 〉�����〈φT|φ(τ)
j 〉

. (I.32)

After cancellations, we are left with simply

denominator =
∑
j

w
(τ ′)
j . (I.33)

The numerator of Eq. (I.2) is evaluated in a similar way:

numerator = 〈ΨBP|Â|Ψ(τ)〉 (I.34)

=
∑
j

[
u

(τbp)
j

]∗
w

(τ)
j

〈η(τbp)
j |Â|φ(τ)

j 〉[
〈φ(τ)

j |η
(τbp)
j 〉

]∗
〈φT|φ(τ)

j 〉
. (I.35)

After cancellations, we have

numerator =
∑
j

w
(τ ′)
j

〈η(τbp)
j |Â|φ(τ)

j 〉

〈η(τbp)
j |φ(τ)

j 〉
(I.36)

Putting Eqs. (I.33) and (I.36) together, we have the formula for the back-propagated
estimator

〈Â〉bp =

∑
j

w
(τ ′)
j

〈η(τbp)
j |Â|φ(τ)

j 〉

〈η(τbp)
j |φ(τ)

j 〉∑
j

w
(τ ′)
j

. (I.37)

To summarize, in this appendix, we have derived a procedure to calculate the expectation
of a physical observable using b1ack-propagation.





Appendix J

Stabilization of matrix
multiplication

In this appendix, we discuss how a loss of numerical accuracy can occur in a “naive”
CPMC implementation and show a procedure to counter this loss of accuracy. We have
adapted materials from Assaad [42, pp.120-1,127] and Zhang [46, pp. 16-7].

In Appendix F, we showed that the one-particle equal-time Green’s function between
two Slater determinants |P 〉 and |Q〉 is

Gij = 〈cic†j〉 =
〈P |cic†j |Q〉
〈P |Q〉

(J.1)

= I −
[
Q(P †Q)−1P †

]
. (J.2)

In a CPMC algorithm, we want to calculate 〈cic†j〉 for the ground state wave function i.e.

〈ψ0|cic†j |ψ0〉
〈ψ0|ψ0〉

≈
〈ψT|e−τLĤcic†je−τRĤ |ψT〉
〈ψ0|e−τLĤe−τRĤ |ψ0〉

(J.3)

so we identify |P 〉 = e−τLĤ |ψT〉 and |Q〉 = e−τRĤ |ψT〉 in Eq. (J.2). On finite-precision

machines the repeated propagation of |ψT〉 by e−τLĤ will cause numerical instabilities such

that round-off errors dominate such that |φ(τ)
j 〉 represents an unfaithful propagation of |φ(0)

j 〉.
This instability is directly related to the collapse to a bosonic ground state. That is, if we
let the propagation continue without any stabilization procedure, all single-particle orbitals
in each walker would become the same.

To alleviate this problem, we periodically perform a modified Gram-Schmidt reorthonor-
malization on the walkers. At some appropriate step in the random walk when reorthonor-
malization is to be carried out, we decompose the matrix P of a walker into P = U1D1V1

where U1 is an orthonormal matrix, D1 is a diagonal matrix and V1 is an upper triangular
matrix. Similarly, we decompose Q as Q = U2D2V2. It turns out that the one-particle Green’s
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function is invariant even if we discard the D’s and V ’s matrices because

Q(P †Q)−1P † = (U2D2V2)
[
(U1D1V1)†(U2D2V2)

]−1
(U1D1V1)† (J.4)

= (U2D2V2)
[
V †1 D

†
1U
†
1U2D2V2

]−1
(V †1 D

†
1U
†
1) (J.5)

= U2(D2V2)
[
(V †1 D

†
1)(U †1U2)(D2V2)

]−1
(V †1 D

†
1)U †1 (J.6)

= U2 ����(D2V2)�����(D2V2)−1 (U †1U2)−1
�����
(V †1 D

†
1)−1

����(V †1 D
†
1) U †1 (J.7)

Q(P †Q)−1P † = U2[U †1U2]−1U †1 . (J.8)

Thus the numerical instabilities disappear from the problem of computing the equal-time
Green’s function. Since all physical observables relies on the equal-time Green’s function,
the above stabilization procedure leaves the physical results invariant.



Appendix K

Two-body operators

This appendix shows that any two-body operator can be expressed as a sum of squares
of one-body operators. It is not essential to the implementation of this thesis but shows that
the Hubbard-Stratonovich transformation can be used to handle any two-body interactions.
It expands on the materials in Zhang [47, p.10] and Motta et al. [24, p. 9].

The general form of an operator in second-quantization is

Ĥ =
∑
ij

Aijc
†
icj +

∑
ijk`

Vijk` c
†
ic
†
jc`ck , (K.1)

where the second term is the most general form of a two-body operator:

V̂ =
∑
ijk`

Vijk` c
†
ic
†
jc`ck . (K.2)

We first introduce two new indices α = (i, `) and β = (k, j) and letting Vαβ = V(i,`),(k,j) =
Vijk`. Note that this is simply a different scheme of labeling the indices. If there are M
single-particle basis states (labeled by i,`,j and k), there are M2 possible values of α (and
M2 values of β). Note that each of the indices i,`,j and k ranges over both space and spin
coordinates e.g. on an N -site lattice with two possible spins on each lattice site, M = 2N
hence M2 = 4N2.

We first prove that the matrix V is Hermitian, that is

V∗αβ = Vβα . (K.3)

From the way α and β are defined, this is equivalent to showing that

V ∗ijk` = Vk`ij . (K.4)

Note that in this notation when converting from V to V , the first of the two subscripts of V
forms the two “outer” subscripts of V (in the correct order) while the second of the two
subscripts of V forms the inner subscripts of V (in reversed order). Thus Vβα becomes Vk`ij .

Eq. (K.4) follows immediately from the Hermiticity of V̂ = Ĥ − K̂ (which is in turn
Hermitian because Ĥ and K̂ are both Hermitian). Since V̂ is Hermitian, we have

V̂ † = V̂ . (K.5)
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The LHS of Eq. (K.5) is

V̂ † =

∑
ijk`

Vijk`c
†
ic
†
jc`ck

† (K.6)

=
∑
ijk`

V ∗ijk`c
†
kc
†
`cjci Vijk` is a scalar (K.7)

while the RHS is

V̂ =
∑
ijk`

Vijk`c
†
ic
†
jc`ck (K.8)

=
∑
ijk`

Vk`ijc
†
kc
†
`cjci rename i→ k, j → `, k → i, `→ j . (K.9)

By “comparing coefficients” of Eqs. (K.7) and (K.9), we have proved Eq. (K.4), hence V is
Hermitian. Thus we can diagonalize V as

Vαβ = R†ΛR (K.10)

=

M2∑
γ=1

(R†)αγλγRγβ (K.11)

where Λ is the diagonal matrix containing the eigenvalues λγ . As a side note, because V is
Hermitian, the λγ ’s are real.

V̂ can then be rewritten

V̂ =
∑
ijkl

Vijk`c
†
ic
†
jc`ck (K.12)

=
∑
ijkl

Vijk`c
†
i (δj` − c`c

†
j)ck {c†j , c`} = δj` (K.13)

= −
∑
ijkl

Vijk`c
†
ic`c

†
jck +

∑
ijk`

Vijk`c
†
ickδj` (K.14)

= −
∑
(i,`)

∑
(k,j)

(c†ic`)(c
†
jck)Vijk` +

∑
ijk

Vijkjc
†
ick . (K.15)

Let pα = c†ic`, qβ = c†jck, α = (i, `) and β = (k, j), we have

V̂ = −
M2∑
α=1

M2∑
β=1

pαqβVαβ +
∑
ik

∑
j

Vijkj

 c†ick (K.16)

= −
M2∑
α,β=1

pαqβ

M2∑
γ=1

(R†)αγλγRγβ

+
∑
ik

∑
j

Vijkj

 c†ick using Eq. (K.11) .

(K.17)

Note that pα and qβ are Hermitian conjugates of each other1

V̂ = −
M2∑
γ

M2∑
α

q†α(R†)αγ

λ

M2∑
β

Rγβqβ

+
∑
ik

∑
j

Vijkj

 c†ick . (K.18)
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Define

ρ̂γ =
M2∑
β

Rγβqβ =
∑
kj

Rγ(k,j)c
†
jck (K.19)

and

ρ̂0 =
∑
ik

∑
j

Vijkj

 c†ick . (K.20)

Note that both ρ̂γ and ρ̂0 are one-body operators. Then we can rewrite Eq. (K.18):

V̂ = −1

2

M2∑
γ

λγ{ρ̂γ , ρ̂†γ}+ ρ̂0 (K.21)

where {, } denotes the anticommutator. Since

{ρ̂γ , ρ̂†γ} =
1

2

[(
ρ̂γ + ρ̂†γ

)2
−
(
ρ̂γ − ρ̂†γ

)2
]
, (K.22)

we have succeeded in writing the two-body operator V̂ as a sum of squares of one-body
operators. The operator ρ̂0 is a linear one-body operator and can be combined into the
one-body part of the Hamiltonian.

Thus the general second-quantized operator in Eq. (K.1) now can be expressed entirely
in terms of one-body operators

Ĥ = Ĥ0 −
1

4

M2∑
γ=1

λγ

[(
ρ̂γ + ρ̂†γ

)2
−
(
ρ̂γ − ρ̂†γ

)2
]

(K.23)

1 From the definition of pα and qβ in Eq. (K.15) and the resulting expression in Eq. (K.16), we are
essentially making the association∑

α

pα =
∑
(i,`)

c†i c`

and ∑
β

qβ =
∑
(k,j)

c†jck

Taking the Hermitian conjugate of this equation gives∑
β

qβ

† =

∑
(k,j)

c†jck

†

=
∑
(k,j)

c†kcj

=
∑
(i,`)

c†i c` rename i→ k, `→ j

=
∑
α

pα

This is what we meant by saying qβ and pα are Hermitian conjugates. This also means that the α and β
indices are the same.
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where the λγ ’s are real and Ĥ0 is a (linear) one-body operator:

Ĥ0 =
∑
ik

Aik +
∑
j

Vijkj

 c†icj , (K.24)

which is easy to propagate and requires no Monte Carlo sampling. The sum in Eq. (K.23)
contains the squares of one-body operators ρ̂γ :

ρ̂γ =
∑
kj

Rγ(k,j)c
†
jck . (K.25)

From Appendix A, we know that every square of an operator produces an auxiliary field
under the Hubbard-Stratonovich transformation. Since there are 2M2 squares of one-body
operators in Eq. (K.23) (two for each term of the γ-summation), the worst case scenario
(i.e. a completely generic two-body operator) will require sampling 2M2 auxiliary fields
per random walk step. As noted on page 109, for a N -site lattice with spin-1/2 particles,
M = 2N i.e. the worst case scenario requires sampling 8N2 auxiliary fields per random walk
step.

However, this number is often much smaller in practice. As we have seen in the Hirsch
spin transformation in Eq. (A.15), we only need to sample N auxiliary fields per random
walk step.
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