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We have recently developed a formalism for carrying out Monte Carlo calculations on

systems with coupled boson-fermion degrees of freedom. Here we present the results ob-

tained using these techniques on some specific systems. First the quantum-mechanics

problem of a single boson coordinate linearly coupled to a fermion is studied. The fer-

mion Green's function and the boson coordinate displacement are calculated and com-

pared with exact results. Extending this analysis to a one-dimensional array, a field

theory in one space and one imaginary time dimension is investigated. The fermion and

boson Green's functions are calculated and compared with analytic results obtained in the

limit where the bare boson frequency is much larger or much smaller than the charac-

teristic fermion energies.

I. INTRODUCTION

We have recently proposed a method for carry-
ing out Monte Carlo calculations for systems with
both boson and fermion degrees of freedom. '
Here we apply these techniques to some particular
examples selected to illustrate the formalism and

explore its utility. We find that our approach
yields very accurate numerical results for lattice
field theories in one space and one time dimension.

We begin by analyzing in some detail the
quantum-mechanics problem of a boson linearly
coupled to a fermion charge. The Euclidean action
for this system is

r

S =f drfdx —, M ' +—, tran(x, r) +1b (x,r) — +co+A/(x, r) p(x, r)ay(x r) , t a a'
a~ a'T

Here, 4 (r) and 1(t(r) are the boson and fermion
fields, respectively. ~ is the imaginary time and
P= 1 lkT is the inverse temperature. Physically,
this action could represent a molecule whose im-

portant degrees of freedom correspond to a relative
nuclear displacement and an electron orbital with
the charge on the orbital linearly coupled to the

I

nuclear displacement. When an electron is added

to the orbital, the nuclear frame distorts lowering

the energy of occupation from that of the undis-

torted configuration.

Next, we consider a field theory in one space and

one imaginary time dimension with the action

S=J dr -M +-~y(~)'+0(r) +~+)(4(r) 0(r) .t)p(r) 2 t
a. ~

'
a.

When this theory is placed on a spatial lattice with
periodic boundary conditions, it describes a ring of
molecules of the type described earlier, of coupled
via a fermion transfer matrix element. Such a sys-
tem has been previously introduced in discussions
of polarons. By adjusting the chemical potential co

so that there are many electrons on the ring, one
goes over to the problem of one-dimensional
electron-phonon systems and the possibility of a

spontaneous Peierls lattice distortion in the ground
state.

In treating such systems it is natural to consider
an adiabatic limit in which the nuclear rearrange-
ment takes place on a time scale which is slow
compared to the electronic motion. Formally, the
opposite limit, in which the boson degrees of free-
dom respond rapidly compared to the fermion de-
grees of freedom, can also be considered. This lim-
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it occurs when a Hubbard-Stratonovich' transfor-
mation is used to replace a four-fermion interaction
by a bilinear fermion coupling to an auxiliary field.
In this work, both limits will be investigated in or-
der to test and interpret the Monte Carlo results.

By its nature a Monte Carlo procedure is like an
experiment. One must make decisions regarding
what is to be measured and then, once the results
of the measurement are known, they must be inter-
preted. It turns out that solutions can be obtained
for the two limiting cases in which the boson fre-

quency Q=(lr/M)' is much less or much greater
than the characteristic fermion frequency. %e will
often refer to these simply as the M~~ or M~O
limit, with the idea of an oscillator with mass M
and a fixed spring constant in mind. These limit-
ing cases as well as the exactly soluble single-site
problem provide a basis for interpreting the Monte
Carlo results for the ¹iteproblem. The single-
site problem is discussed in Sec. II and the E-site
problem is considered in Sec. III. In the Con-
clusion, Sec. IV, the question of the nature of the
one-dimensional ground state and its dependence
on the ratio of the boson to fermion characteristic
response frequencies is raised. We also discuss fur-
ther ideas for implementing Monte Carlo calcula-
tions of boson-fermion systems.

II. A QUANTUM-MECHANICS PROBLEM

and for fixed ~, Q~O as M~oo. Here we will also
be interested in the opposite limit, where co/0 is
small or M~O. XVe will see that this corresponds
to a Hubbard-Stratonovich formulation of a self-

interacting fermion problem which for this particu-
lar case simplifies to a noninteracting problem be-
cause c ccrc =c c.

In the formalism that will be used, the natural
quantities which appear are thermal Green's func-
tions. In particular, the fermion and boson Green's
functions which will be calculated are given by

and

G(r) =(T[c(r)c (0)]} (2.2)

D(r) = ( T[x(r)x(0)]), (2.3)

G( —r) = —G(P —&),

D( r) =D(P—r). —
(2.4)

(2.5)

In our analysis it will be useful to keep in mind
the behavior and meaning of these Green's func-
tions which follow from expanding them in a com-
plete set of energy eigenstates. For example, for
w&0

with c(r)=e 'ce 'and x(r)=e 'xe '. Here,
the averages correspond to a trace over
e ~ /Z(P), with Z(P}=Tre ~ . From the com-
munity relations one can show that 6 and D satisfy
the well-known boundary conditions

In this section we consider a quantum-mechanics
problem in which a harmonic oscillator is linearly
coupled to a fermion charge. The Hamiltonian for
this system can be written in the second quantized
form

—PE„

G(r}=g J
(m (c t)n) )'e

N, NI

(2.6)

H=Qb b+coc c+Axc c,, (2.1)
which at low temperatures becomes

where b and c are the destruction operators of the
boson and fermion, respectively, Q=(a./M)' and
x=(b+b )/(2MQ)'~. The first term describes a
relative displacement coordinate characterized by a
mass M and a spring constant ~, the second term
represents the fermion orbital energy, and the last
term linearly couples the oscillator displacement to
the fermion occupation. Physically, one can imag-
ine a diatomic molecule to which we add an elec-
tron. In the presence of the added electron charge
the relative displacement. between the nuclei shifts.
In this molecular interpretation it is natural to con-
sider a Born-Oppenheimer picture in which the
-electron degree of freedom rapidly adjusts on a
time scale set by ~ ' to the slower A '=&M/a
nuclear motion. This is the usual adiabatic limit

G(r) g ( (m
~

ct
~
0}('e (2.7)

and the Laplace transform of this is just G(r):

In this limit, the large ~ behavior is determined by
the lowest-lying excited state which couples to the
ground state through c . The Green's functions
can also be thought of in terms of the Laplace
transforms of certain types of power spectra. For
example, the probability of adding an electron with
energy v to the molecule is given by the power
spectrum

—PE

P(v) =g i (m
i
c

i
n }[ 5(v —(E~ E„)), —

n, m

(2.8)
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(2 9)P ve dv=G w.

Thus, the inverse Laplace transform of G(r) is
equal to the power spectrum Eq. (2.8} for adding a
fermion to the system.

The Monte Carlo procedure which we will use

has been developed in detail in Ref. 2. Here we
provide a brief heuristic review before making use
of it. To begin with, consider the partition func-
tion for the one-site system with the boson part ex-

pressed as a path integral, but the fermion part left
as a trace over operators:

M. z
PZ= f5x(r)exp —f dr x (r)+ x(r—) TrTexp —f dr[co+Ax(r)]c c

2 2 0
(2.10)

(2.11)

(2.12)

In this form we can proceed to carry out any of the usual Monte Carlo procedures using as an efrectlve ac
tion

Because the single-fermion Hamiltonian H(r) = [co+Ax(r)]c c commutes with itself at different times, the r
ordering symbol T is, in fact, unnecessary. However, in the N-site case in which [H(r~),H(rq)]+0, it will
be neccessary. Now it is straightforward to trace out over the fermions obtaining

P
Z =f5x(r)exp[ —S~(x(r))] I+exp —f dr[a&+Ax(r)]

where Ss(x(r) ) is the pure Bose action
Pf dr[Mx(H)/2+ax(r )/2].

If the T continuum is replaced by a lattice of L points r; =(i , )h—r, and—i=1,2, ...,L and Lhr=P, then
setting x; =x(r;), Eq. (2.11) can be written in the discrete form

—S&((x;j ) —~4+~;)Z ~ dxie ' 1+ e
~ ~i=1 i=1

L —h,gm+kx;)
S, (x;)=S ([x;)}—ln 1+IIe

I

The fermion Green's function can be obtained in a similar manner with

(2.13)

T

G(r)=Z ' f5x(r}e '"""'exp —f dr[co+Ax(r)]

On the discrete ~ lattice this is just

J
G(r )=Z ' f IIdx. ;exp[ —S, ((x;j)]IIe

k=1

P
1+exp —f dr[co+Ex(r))

—6+0'+ AGE )
L

1+ e
k=1

(2.14)

(2.15)

so that once the N Monte Carlo samples (x; J are obtained, G(rj} is
r

—d,geo+ kxk )
L

1+ e
k=1

(2.16)

In Ref. 2, the following expression for the fermion lattice Green s function for the single-site problem was
obtained:

COg COg
G(r) = 1 f(co cos) exp ——(co——

cos )r+ „(e ' —1)— „(e ' —l )(e' —1)(e —1) ' . (2.17)

Here 0'=sinh( —,ArQ)/(br/2), 0"=sinh(brQ)/br, and f(co)=(1+e~) ' is the usual Fermi function.
The polaron binding energy cuz is given by

2MQ'

The average displacement is given by

(2.18)
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(x ) = — f(co co—s).MQ' (2.19)

In the continuum limit Q'=Q"=Q and co& ——A, /2MQ =k /2v. For this case, with co —co~ g0, the low-

temperature large P ground-state limit of G(r) is

(ee& In )[~n+ (e ~—i) lGr =e "'e (2.20)
—(a)~ /0) —.(O) —CO~ )TInitially for rQ & 1, G varies as e "' but as rQ exceeds one G(v.) varies as e e . Physically,

this simply reflects the time scale Q ' for the boson degree of freedom to respond to the presence of a fer-—ro&/0 .
mion. The factor e is the well-known Franck-Condon overlap of the displaced ground-state oscilla-
tors. Taking the logarithm of 6 yields the two limiting forms

—NV, 0(7 ((Q—1

lnG- ' —1(a)B/0—) (co co—s)r,—0 «r. (2.21)

In our Monte Carlo calculations we proceeded through the lattice site by site. At the ith lattice site, a
new value of the field was generated such that x;~x;+Dr. Here, r is a random number between —1 and
+1, and 6 is a parameter fixed so that roughly half the changes were accepted. Then the ratio of the ac-
tions was constructed:

L—[S&(X;+dr)—S&(x;)] gag„—L1T(co+~;

i=1

—ET(COT+AJCt )
L

1+ e (2.22)

and, using the Metropolis algorithm, the change
was accepted if this ratio was larger than a random
number between zero and one.

Table I shows results from some typical Monte
Carlo runs for G(r) and (x ),.with L =10, P= 10,
M=1.0, co=1.0, Q=0.5, and A, =0.5. The
column labeled "exact" gives the lattice results ob-

tained for G(r) and (x ) from Eqs. (2.17) and
(2.19). In each of the runs, the initial field confi-
guration Ix; J was set to zero and 100 warm-up
sweeps of the lattice were made. With an accep-
tance ratio of 0.5 for changing a lattice coordinate
an average sweep through ten lattice sites took
-0.01 sec on the VAX we were using. The
column labeled [10,5] shows the results for G(r)
and (x) when 10 measurements were made, each
separated by five sweeps of the lattice. o gives the
rms deviation. The [10,10] column corresponds
to 10 measurements, each separated by ten sweeps.
Although it appears to have somewhat larger o's
for the larger v. values, a similar type of variation
arises when the initial random-number seed is
changed. We believe that the measurements for 6
are essentially uncorrelated for runs separated by
five sweeps. The last two columns show the results
of two runs starting with different random-number
seeds with 10 measurements, each separated by
five sweeps. While the fermion Green's function
over a range of ~ values agrees quite well with the
exact lattice results, the value of (x ) is small for

this temperature and more diAicult to determine.
We found that by making a number of runs with
different random-number seeds, reasonable results
were obtained for (x ). A plot of (x ) versus tem-
perature is shown in Fig. 1. The solid curve passes
through the exact result given by Eq. ,

(2.19). As
kT increases, the average occupation of the fermion
state approaches 0.5 and —(x ) approaches one for
X=0.5, M =1.0, and Q=O. S.

Figure 2 shows the fermion Green's function
G(r) vs r for an L =30 lattice, with co= 1.0,
Q =0.5, and A, = 1.0. These results were taken us-
ing 100 warm-up sweeps through the lattice and
4000 measurements each separated by five sweeps.
The smooth curve passes through the points of the
exact lattice Green's function. While it is clear
that there is good agreement between the Monte
Carlo results and the exact results, it is difficult to
interpret G(r) in this form. However, from the
general form of the spectral representation Eq. (2.7)
and more particularly from Eq. (2.21), it is clear
that a more interesting quantity to study is
ln

~

G (r)/G(0)
~

shown in Fig. 3. In this figure the
Monte Carlo data is shown as dots, and the dashed
and solid lines correspond to the limiting short-
and long-time behavior, respectively, given by Eq.
(2.21). The data plotted in this form clearly show
that the long-time behavior is dominated by an ex-
citation of energy 0.5 which is just equal to
~—co~ for the parameters of the run.
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TABLE I. Monte Carlo results for G(r) and (x ) on a lattice of l. =10 points, with
P= 10, M =10, F0=1.0, Q=o. s, and lj.=o.s. The exact results are listed in the last column
of both tables for comparison. The bracket's notation is [number of measurements, lattice
sweeps between measurements]. o is the rms deviation computed for a given run. The
lower two columns correspond to two runs which differ only in the initial random-number
seed. The notation a —b means a X10

G [10,5] G [103,10] Exact

0
1

2
3

5
6

8

(x)

0.9970
0.4127
0.1997
0.1060
5.914 —02
3.377 —02
1.956 —02
1.147 —02
6.872 —03
4.309 —03
1.418 —02

5.6 —04
4.1 —03
4.3 —03
3.8 —03
3.1 —03
2.3 —03
1.7 —03
1.3 —03
9.4 —04
7.0 —04
2.0 —02

0.9910
0.4128
0.2009
0.1080
6.190 —02
3.734 —02
2.384 —02
1.6275 —02
1.207 —02
9.803 —03

—1.74 —02

2.2 —03
4.1 —03
4.3 —03
3.9 —03
3.3 —03
2.8 —03
2.4 —03
2.1 —03
2.0 —03
2.0 —03
2.1 —02

0.9940
0.4129
0.1991
0.1054
5.933 —02
3.492 —02
2.138 —02
1.369 —02
9.321 —03
6.965 —03

—1.184 —02

G[lo', s] G [lo', s] Exact

0
1

2
3
4
5
6

8
9

(x)

0.9945
0.4118
0.1979
0.1042
5.828 —02
3.402 —02
2.069 —02
1.314 —02
8.862 —03
6.523 —03

—3.63 —03

5.0 —04
1.3 —03
1.3 —03
1.2 —03
1.0 —03
8.7 —04
7.2 —04
5.9 —04
5.1 —04
4.8 —04
6.3 —03

0.9936
0.4126
0.1986
0.1049
5.896 —02
3.475 —02
2.145 —02
1.393 —02
9.629 —03
7.271 —03

—1.313 —02

5.6 —04
1.3 —03
1.3 —03
1.2 —03
1.0 —03
8.5 —04
7.1 —04
6.1 —04
5.3 —04

-5.1 —04
6.4 —03

0.9940
0.4129
0.1991
0.1054
5.933 —02
3.492 —02
2.138 —02
1.369 —02
9.321 —03
6.965 —03

—1.184 —02

The long-time behavior of In[G(r)/G(0)]
characterizes the bound polaron state while the
short-time behavior gives the fermion energy in the
undistorted molecular frame. The transient

1.0'

0.8

I.O I I I I I I 0.6

0.8
04

0.6—

-Cx&

0.4-

0.2-

0.2

0
0 8 I.O

0;;
0 0.2 0.4

kT
0.6 0.8 I.O

FIG. 1. Average displacement of the oscillator coor-
dinate (x ) versus temperature for ro —cps & 0. The solid
line is the exact result.

FIG. 2 Monte Carlo results for the fermion Green's
function G(~) vs ~ for an L =30 site lattice, with
M =1.0, co=1.0, 0=0.5, and A, =1.0 are shown as the
dots. The solid curve is drawn through the points of the
exact lattice Green's function for comparison.
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Oy quantized form of the Hamiltonian is

H = g [Qb„b„+roc„c„~Ax„c„c„

O

(9
C

IO

FIG. 3. In[6(r)/G(0)] vs r for the Monte Carlo
data of Fig. 2. Note the crossover from —co~ (dashed
1ine) when 0~~~1 to —(co~/0) —(co—co&)~ {solid line)
when Q~&y 1.

behavior associated with the crossover between the
short- and long-time behavior of G(r) has as a
dynamic consequence the emission of bosons. This
is most easily seen from the inverse Laplace trans-
form of the low-temperature limit of G(r), Eq.
(2.20). As noted earlier, this gives the power spec-
trum for adding a fermion of energy v:

I oo

P(v) =f e G(r)

—(ce~/0)—e 5((co —ros+nQ) —v).
n!

(2.23)

The allowed states have v=co —coz+n0, corre-
sponding to a set of oscillator levels n0 lying
above the co —co~ fermion state. The weight for ex-
citing these states reflects the overlap of the ground
state with these final states. In dealing with nu-
merical data one can proceed by assuming a partic-
ular analytic structure for G(r) or P(v) and then
fit the parameters in this form. %e have not pur-
sued this beyond seeing that the limiting slopes in
Fig. 3 fit —ro and —co+cos given by Eq. (2.21).

III. THE T%'0-DIMENSIONAL PROBLEM

In this section we consider the two-dimensional
field theory whose action is given in Eq. (1.2). We
introduce a spatial lattice with N sites and periodic
boundary conditions. The system then corresponds
to a ring of N molecules coupled by a nearest-
neighbor fermion transfer interaction. The second

r(cn+tcn+cn en+i)]. (3.1)

The boson and fermion annihilation operators b„
and e„are periodic, with bN+i ——bi and c~+i ——ci.
The field-displacement operator is related to b„
and b„ in the usual way, x„=(b„+b„)l(2MQ)'~
and Q=(a./M)'

Just as before, it is useful to consider two limit-
ing cases characterized by either a rapid or adia-
batic response of the bosons to the fermions.
Clearly, the adiabatic limit corresponds more near-
ly to the actual electron-phonon problem in the
usual condensed matter systems. However, the ra-
pid limit (M~O) is also of interest since it occurs
whenever a four-fermion interaction is induced to a
bilinear form by means of an auxiliary Hubbard-
Stratonovich field.

The heuristic arguments of Sec. II can easily be
extended to the ¹iteproblem. In the absence of
the boson field, the fermion Hamiltonian is

E=+[roc„c„t(c„+)c„+c„c—„+t )],
n

(3.2)

and its associated partition function has the well-
known form

(3.3)

Here, ek ——co —2t cosk are the eigenvalues of an
N &(N matrix E which describes the single-particle
motion

(3.4)

with 5 defined modulo N so that the periodic
boundary conditions of the ring are maintained.
Using E, the partition function can be written as a
determinant:

Z=det(I+e ~ ), (3.5)

where I is the N)&N unit matrix.
Now, as in Sec. II, we will write the partition

function for the combined fermion-boson system in
a mixed form. Here the fermion operators are
traced over, and the bosons are represented by a
functional integral with the action

(3.6)
Mx„(r)Ss= I g + x„(r) dr. —

n
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V(r) ~ =Ax (r}5

In going onto the ~ lattice we note that

(3.8)

~l

T exp —J dr H(r) = U;+O(hr'), (3.9}
i —E

Tracing over the fermions gives

Z= J+5x„(r)e
n P

y. det I + T exp —f «H(&), (3 7)
0

where H(r) is an N )CN matrix E + V(r), with

Equations (3.11) and (3.12} are just the forms
derived previously in I.

In order to implement a Monte Carlo calculation
using Eqs. (3.11) and (3.12) we proceeded as dis-

cussed iri I. For a starting field configuration

[x„(r;}I,which was actually taken to be zero, the
fermion Green's-function equation (3.12) was deter-
mined. Then a sweep through the space-time lat-
tice was begun, time slice by time slice. A change
in a field element x„(r;) +x„—(r;)+Sr was made,
and the ratio of the fermion determinants was com-
puted according to

where U; has the form

—Kdtr/2 ~ +j )~+ —Khw/2U;=e e '. e (3.10)
R =1+[1—G„„(i;,r;)](e '"4"—1), (3.13)

Therefore, on the lattice

Z =Ig 5x„(r;)e det(I+B~" B&), (3.11)
n, i

—hrV(w; )
where B;=e ' e ' . Proceeding in the
same manner it follows that the 'N)&N matrix fer-

mion Green's function is given by averaging

G(&i ri )=Bi""—Bi (I+B/ I'"B&BI —Bi }"'
(3.12}

with the effective weight e det(I +B~"B~ ).

with equal-time, n, n spatial element of Eq. (3.12)
for the ith time slice

G(r;, r() =(I +B; )" B)BI. B;)" (3.14)

R was multiplied by the usual ratio of the boson

part of the action, and if the result was larger than

a random number between zero and one, the
change in the field configuration was kept. If the
change was kept, the equal-time Green's function

was updated at every spatia1 point in the time slice

~; according to

[5p GJ„(7( r, }](—e '—1)G„k(r;,r; }
G,v(ri ri)=GIk«i ri)—

1 —[1—G„„(r;,r; )](e ' '—1)
(3.15)

After passing through the ith time slice we go to
the (i+1)th time slice with

G(r;+ ),~ + ) ) =B;G(r;, r; )B;

When a measurement of G (r;,rI ) was to be made,

we computed the expression given in Eq. (3.12) for

the time slice we were on. Measurements were

taken in such a way that all time slices were

covered many times in a given run.
After a number of iterations, roundoff errors be-

gin to accumulate in G. These could be eliminated

by a fresh calculation of G starting from the given

field configuration. However, we found it faster to
simply correct G by calculating 5G, the deviation

of G from its exact value:

5G =G G(I+B; ) "B)Br—"Bg)G+O(5G }.

(3.17)

The computer we were using carried 16 significant

I

figures, so we implement this correction when ap-

proximately 8 figures had been lost due to round-

off errors.
To test this procedure, we studied the M~(} lim-

it of the lattice model. In this limit it is straight-
forward to obtain the exact result by completing
the square on x„and integrating out the boson
field separately at each site giving simply

( —A, /2K)(c„c„) = —cdscgcg

This just shifts the chemical potential down by a
factor co~. Then the remaining fermion problem is
diagonalized by going to momentum space with
the allowed k„values equal to 2~n/X, with n =0,
+1,...,N/2 for N even. The quasiparticle opera-

tors are ck =( I/ N )gl e c~ and their energies
ikxE

are just ek ———2t cosk+co —co~. Taking the spatial
Fourier transform of the fermion Green's function
one obtains the free field result



D. J. SCALAPINO AND R. L. SUGAR

G(k, r) = (ck (r)ck ) =[1 f—(ek )]e

The spatial Green's function is

l.0"

08- (0) p=5

G(n, r) = Q—G(k, r)e' " (3.18)

Here we have simplified our notation for the
space-ti'me dependence of the average Green's func-
tion since it only depends on relative lattice space
n and time v.=lh~ separations.

The Monte Carlo procedure was used to com-
pute the fermion Green's function on a 10)& 10
space-time lattice. Typically, a run would consist
of ten warm-up sweeps through the lattice and
1000 measurements, each separated by five com-
plete sweeps. The resulting G(n, r) data was then
Fourier transformed to obtain G(k, r) Seve.ral runs
were made starting from difFerent random-number
seeds to check on the consistency of the rms errors.
With an acceptance ratio of 0.5 for changing a site
coordinate, an average time for sweeping through
an I =10, N =10 lattice was several seconds on
the VAX we were using. This was done for a
variety of parameters and checked against the exact
results. For M =0 our form of the action on a fin-
ite ~ lattice gives the exact continuum limit. An
interesting case is that of a half-filled band corre-
sponding to co=co~. Here we set t =A, =1 and
~=2 giving co~ ——0.25. With t =1, the fermion
bandwidth is four so that a value of P=S
(kT =0.2) gives a relatively degenerate Fermi sea,
while a value of P= 1 corresponds to a hot system.
Figures 4(a) and 4(b) show the values of (ckck ) vs
k for k =~/Sl, with l =0, 1,...,5 obtained from the
Monte Carlo calculation. The exact values for a
10-site ring lay inside the dots and the solid line
corresponds to (ckck ) for an infinite ring.

In Fig. 5 the Monte Carlo result for the zero-
time spatial Green's function G (n, O) = (c„ci ) is
shown as the dots. Again the exact results for a
10-site lattice lay inside the dots. The solid line
represents the zero temperature, N—+00 limit:

G(x) =f e' [1 f(ek)]—

0.2-

0
0 0.8 l.6

k

I I

2.4 32

Q9i

0.7

Ql
0.8 l.6 2.4 3.2

k

FIG. 4. MC results for the occupation number

(ckck ) for a ring of 10 sites, with t =A=1 an, d It=2. (a)
is for P=5 and (b) is for P= l.

04

0.2

C
0C9

values for a run in which, ten warm-up sweeps of
the 10& 10 lattice were made followed by 1000
measurement sweeps. The first two k values corre-
spond to k states which are occupied in the ground
state. For N = 00 the Fermi momentum k~ would
be ir/2. Thus, the equal-time value G(k, O)
=1—(ckck ) is small at low temperatures, where
(ckck ) is near unity. As r increases, G (k,r) grows
since the excitation energy associated with the
k =0 and 2ir/5 state is negative. For the half-
filled band, the k =3rr/5 state is unoccupied in the
ground state leading to a value of G(k, O) of order
one at low temperatures. Since its energy is posi-
tive G(k, r) decays with increasing r

sirimx —sinmx /2
(3.19)

Clearly, for the half-filled finite ring G(n, O) is an
even function about n =5. It is remarkable how
closely the finite-lattice result follows the A' = 00

behavior over the first five points. This clearly
shows the Fermi-hole correlations.

Table II gives a comparison of the Monte Carlo
calculations with the exact results for three k

-0.4
I I I I I I I I I

2 4 6 8
n

IO

FIG. 5. Equal-time fermion Green's function 6
versus distance. The points are Monte Carlo data for a
discrete lattice to ten sites which is half-filled and the
solid curve is the continuum result. The ring G is na-
turally periodic while the continuum 6 decays.
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TABLE II. Comparison of exact results for G(k, ~) with the Fourier transform of G(n, g)
obtained in a Monte Carlo run. Here the parameter values are M =0, k =2, t =A.=1, and
co=0.2S. The notation a —b implies a )&10

MC Exact MC
k =2m/5

Exact MC
k =3m./5

Exact

4.709 —05
1.488 —04
2.249 —04
7.718 —04
2.383 —03
6.705 —03
1.829 —02
4.965 —02
0.1351
0.3669

4.540 —05
1.234 —04
3.354 —04
9.118 —04
2.479 —03
6.738 —03
1.831 —02
4.978 —02
0.1353
0.3679

4.253 —02
5.759 —02
7.838 —02
0.1068
0.1466
0.2002
0.2736
0.3753
0.5130
0.6993

4.351 —01
5.927 —02
8.073 —02
0.1100
0.1498
0.2040
0.2779
0.3785
0.5155
0.7022

0.9539
0.7044
0.5190
0.3802
0.2818
0.2093
0.1540
0.1133
8.349—02
6.162—02

0.9565
0.7022
0.5155
0.3785
0.2779
0.2040
0.1498
0.1100
8.073—02
5.927—02

In Fig. 6 we have plotted ln
l
G (k, r)/G(0, 0)

l
vs

~ for different momenta. As expected, the results
correspond to straight lines with slopes proportion-
al to —6'k. Results for ek vs k obtained from the
slope of the lines in Fig. 6 are plotted in Fig. 7
along with a solid curve showing the exact result,
—2t cosk. The error bars lay inside the dots.

Turning next to the finite M calculations, it is of
course straightforward to add the kinetic energy

Q,.Mx; /2 of the oscillators to the Monte Carlo
calculation. However, as in any experiment it is
useful, in determining what to measure and how to
interpret it, to have some general idea of the physi-
cal behavior of the system. For a vanishing
transfer matrix element t =0, the ¹iteproblem is,
of course, equivalent to X separate one-site prob-
lems. In this case we have seen that if an electron
is added to the site, the lattice will distort on a
time scale set by 0 '. The coordinate (x;) ap-
proaches —A, /2~, and the fermion energy deter-
mining the decay of G(r) changes from cu to
m —co~. Here we have assumed co —co~ g 0 so that
in the ground state the site is empty. Now, if the

transfer term is present but t «co&, the initial

response of the system is characterized by a narrow

energy band ~—2t cosk. However, after a time of
order 0 ', the lattice will distort and the behavior
of G(r) is determined by a small polaron band
with energy co —co&. The momentum eigenstates of
this band will be a superposition of distorted
single-site states, and the bandwidth will be ex-

ponentially narrower than 4t by a factor propor-—(co~/& 7
tional to the Franck-Condon factor e
When the transfer coupling t is increased so that
t &g co~, the distortion extends over a number of
sites of order 2t/co&, and its binding energy is re-

duced by a factor proportional to co&/2t. This is
the so-called large-polaron state.

With the possibility of lattice distortions and ex-

tended structures it becomes more difficult to ade-

quately cover the phase space. We found that it
was useful to average over a number of runs which
were started with diA'erent random-number seeds.
Thus, typically we would gather data from 10 runs,
each having 100 warmup sweeps and 100 measure-

I5—

I0O

0—
~ 5

~-IO—
C

-I.5—
24

0 0.8 2.4 3.2

FIG. 6. MC. results for ln
l
G(k, r; )/G(k, O)

l
vs r;

The slopes give the energies of the various k states.
FIG. 7. ek vs k obtained from the slopes of lnG for

the 10-site ring. The solid line is —2t cosk.
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FIG. 9. Lattice-displacement-field correlation func-
tion D(l) for a 16-site lattice.

state of the interacting system which smears the
Fermi surface. Finally, Fig. 11 shows two plots of
ln1G(k, r)/G(k, 0)

1
for k =m/2 and k=3ir/2.

The Monte Carlo data is represented by the solid

dots with the error bars. The dashed curve is sim-

ply a guideline. The solid curve is obtained from

the extreme adiabatic limit discussed below. Clear-

ly, these are qualitatively different from Fig. 6 for
the M =0 case previously discussed.

In order to develop a framework with which to
interpret this behavior, we consider the adiabatic
limit in which M is sufficiently large that it is
reasonable to proceed by neglecting the boson ki-
netic energy in H in Eq. (3.1). Remember, as pre-
viously emphasized, this is just the opposite limit
of neglecting the term QMx; /2 in the functional

integral formulation. This latter case, the M~O
limit, corresponds to uncorrelated x„(r;)x„(rz)

fields, while the M~oo limit corresponds to long-
range r correlation of x„(r;)x„(rj). Dropping the
lattice momentum terms of H corresponds to the
extreme adiabatic view in which a minimum ener-

gy ( or free energy) state for the fermions is calcu-

&(I)=—g(x;+Ix; )
1

(3.20)
l.

determined from a Monte Carlo run on an N =12
by I. =10 lattice. Here we have set M =1, t =1,
0=0.5, and A, =0.75. The chemical potential
co =1.125 was adjusted until a half-filled band was
obtained and P was set to ten corresponding to a
low-temperature degenerate Fermi gas. The oscil-
lating character of the displacement-displacement
field correlations are clearly evident. A similar run
on an N = 16 by I.= 10 lattice is shown in Fig. 9.

The expectation value of (ckck ) for the N =12,
I.=10 lattice at P=10 is shown in Fig. 10. The
solid points with the error bars represent the re-
sults of various Monte Carlo runs taken with dif-

ferent starting random-number seeds. The solid
curve passes through the points corresponding to a
free-particle half-filled band, with P= 10. The
dashed curve is the result of the extreme adiabatic
limit to be discussed below. There is a clear
change in the occupation numbers in the ground

I I I I I I I I I

1.0~—~—~ '4

0.8—

~ 0.6—

0
0.4—

0.2—

2.4 3.2
0 I I I I I I I I I I I I

0 8 12
0

0
I

0.8 1.6
k

FIG. 10 Expectation value of (ckck ) for the N =12
site lattice and the parameters listed in Fig. 8 are shown
as the solid dots. The solid curve corresponds to what
one would obtain for a noninteracting half-filled band,
with P=10. The dashed line passes through the points
which correspond to vk, Eq. (3.26).

FIG. 8. Equal-time lattice-displacement-field correla-
tion function D(l)=(1/N)g„ iN(x„+ix, ) vs' for a
12-site lattice, with M =1, t =1, Q=0.5, A, =0.75,
co=1.125, aud P= 10. In the extreme adiabatic limit
D(l) alternates between the values shown by the two
solid lines.

ment sweeps which were separated by five lattice
sweeps. We also checked several different 10-run
sequences to check that our errors were consistent.

We began by setting t =0 to see that the single-
site results were satisfactorily reproduced. Then
the transfer coupling t was increased and deviations
of the type expected on the basis of the large-
polaron theory were observed. However, it was as
we began to decrese co so that the system became
degenerate that the most interesting behavior ap-
peared.

Figure 8 shows the equal-time lattice-displace-
ment-field correlation function
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FIG. 11 1n
l
G(k, r)/G(k, O)

l
vs r for the parameters

listed in Fig. 8. (a) is for k =n./2 and (b) is for
k =3m/2. The Monte Carlo data is represented by solid
dots and the adiabatic result given by Eq. (3.29) is
shown as the solid line. The dashed line through the
Monte Carlo data is simply a guideline for comparison
with the solid line.

lated for each possible lattice configuration speci-
fied by the x„. Then the ground state is taken as
the state which has the minimum possible energy
(or free energy).

In the absence of the ion kinetic energy, the
Hamiltonian is a quadratic form in the fermion
operators and can therefore be numerically diago-
nalized for any configuration of the displacement
field. To find the ground-state configuration one
would seek the absolute minima of the energy over
the parameter space jx; I. The extended wave na-
ture of the fermions introduces long-range cou-
plings among the x; coordinates, and the deter-
mination of the ground state is, in general, a non-
trivial problem even though in the absence of the
ion kinetic energy we are dealing with essentially a
mean-field problem. Here we will consider a half-
filled band with X/4 an integer. Such systems are
expected to have a simple Peierls distortion. To
determine the parameters associated with this we
note that in the M~ ao limit, Eq. (3.1) can be
rewritten in the form

N
H= g 2KXn +COCnC nM+C nCnn

n=1

Setting x„=x+(—1)"5x in Eq. (3.21) and making

the usual canonical transformation to the new

quasiparticle creation operators for the conduction
and valence bands

fc, v —QkCk+UkCk —m' (3.22)

+g' I ai+ M —[(2t cosk ) +b ]' (3.23)

Here, A=A, 5x, and the prime denotes that the sum
on k runs over the reduced zone. Minimizing Eo
with respect to x gives x = —A, /2' just as for the
single-site case when the site has an average occu-
pation of one-half. For a half-filled band,
co= —Ax, which using the previous expression for
x becomes co=i, /2~=co~. The resulting ground-
state energy is

NKh
Eo — +—— g'[(2t cosk) +6 ]'

4 2A,
'

(3.24)

Minimizing Eo with respect to 4 gives

2Ng

N k
Ek' (3.25)

with Ek=[(ek) +b ]' and ok= 2tcosk. Solv--

ing this numerically for N =12 leads to the results
for 6/t vs t/2cos shown in Table III.

TABLE III. Solution of the gap equation (3.25) for
an N =12 site lattice.

t /2m'

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.971
1.137
0.858
0.717
0.632
0.573
0.531
0.498
0.471
0.449

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.429
0.413
0.398
0.384
0.372
0.360
0.350
0.340
0.331
0.322

Here we take X to be an integer multiple of 4 so
that k =2irl/N, with I =0, +1,..., N/4 runs over
the reduced zone. The resulting ground-state ener-

gy is

zx vXb'-"
2

+
2A.

—t ( Cn + ICn +Cn Cn + I ) . (3.21)
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The function vk is given by

1
v ——1k (3.26)

and uk ——1 —vk. In terms of the quasiparticle
valence and conduction operators the Hamiltonian
is

Eo+ g+kVk Yk QEklk Yk
k k

(3.27)

with Ek ——Ek and Ek ———Ek the conduction and
valence quasiparticle energies, respectively. In the
ground state the valence states are filled and the
conduction states are empty.

Expressing the fermion operator ck and ck in
terms of the conduction and valence quasiparticle
operators we have

t c~ v~
ck =Qk fk +Uk'

and its adjoint. Therefore

G(r) =- (ck(r)ck (0) )

(3.28)

in[6 (k =n./2, r)/G (k =m. /2, 0)]

is approximately —0.4, corresponding to a gap
5=0.4. At larger ~ values, where ~Q & 1, the lat-
tice will distort leading to the deviation of the
Monte Carlo data from the M = op adiabatic result.

=~k'[1 f«k)]e —" +Uk'e ' f«k) .

(3.29)

Here the first term is the contribution associated
with adding an electron to a conduction state k,
while the second term corresponds to adding an
electron to the valence state k. This latter situa-
tion can occur at finite temperature and is propor-
tional to the thermal probability for finding a hole
[1 f( —Ek)j=f—(Ek). At low'temperatures
Gk(0)=uk ——1 Uk so that (ck—ck) =Uk.

For the parameters associated with the Monte
Carlo calculation on the N =12 lattice, co&

——1.125,
which from Table III implies 6=—0.5. The dashed
line in Fig. 10 passes through the values of vk ap-
propriate to 6=0.5. Similarly in Fig. 11, the solid
line is a plot of in[6(k, r)/G(k, O)], with G(k, r)
given by Eq. (3.29) for an E= 12 lattice, with t = 1

and 5=0.5. Just as in the one-site case, we expect
that the initial behavior for ~ values less than 0
reflects the dynamics of the added electron in the
unrelaxed lattice configuration. The initial slope
for

Whether this deviation reflects a bound polaronlike
state or is simply a shift in 5 altering the entire
band is not clear from. our present measurements.

We can use these ideas to extract further spectral
information from our Monte Carlo data. Natural-

ly, this information will be model dependent.
Specifically, suppose we assume that for short
times G (k, r) has the form given by Eq. (3.29).
Then the energy spectrum associated with adding
an electron in a given Bloch momentum state to
the ground-state lattice configuration can be es-
timated from

In this way we obtained results for, k &m/2. Com-
bining the results for k & ~/2 and k & m/2 gives
the point shown in Fig. 12. For comparison the

E

0
0

I

0.5
k/w

I

1.0

FIG. 12. "Energy spectrum" EI, of an added electron
in the unrelaxed ground-state lattice configuration. The
solid curve Ek [(2t cosk ) +h, ]'~, with t = 1 and
5=0.5 is shown for comparison.

—
I in[6 (k, hr) /G (k, O) ]I /hr.

For k values equal to or greater than ~/2,
G(k, O) = 1 —(ckck ) is sufficiently large that a
reasonable estimate can be obtained from the
Monte Carlo data. However, for values of k less
than rt/2, G(k, O) becomes small and the accuracy
of the data is not as high. Turning to the analytic
model results, Eq. (3.29), we see that lnG (k, r) has
a positive slope equal to Ek as r goes to p. Now,
although we have only data out to r=P b,r, we-
know on general grounds that G(k, P) =1—G(k, O).
Thus we can estimate Ek for k & m/2 by comput-
ing

(in[ [1—G(k, 0)]/G (k,P—hr) ] )/hr
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solid curve is [(2t cosk} +5 ]', with t =1 and
6=0.5.

Finally, we calculated x and Sx for the parame-
ters used in the N =12, I.=10 model and found
x= —A. /2Q =—1.5 and 5x=b, /A, =0.67. For
comparison, the measured values averaged over ten
runs with different initial random-number seeds

were (x }= —1.45 and b, =0.4, giving 5x =0.53.
Using the extreme adiabatic results x =1.5 and
5x =0.67 gave a lattice correlation function D (I)
which alternated between [(x +5x) +(x —5x ) ]/2
=2.7 and and (x=5x) (x —5x)=1.8. These two
limits are shown as solid lines in Fig. 8.

IV. CONCLUSION

(A }= (AD/Dg }g/(D/Dg }g, (4.1)

where ( )z means the expection value obtained
from the field configurations generated with Dz.

For example, if the characteristic boson frequen-

cy is much less than that of the characteristic fer-

%'e believe that we have demonstrated the utility
of our approach for making Monte Carlo calcula-

tions of coupled boson-fermion systems in two
dimensions. As is illustrated in the figures and

tables we have obtained very accurate numerical

results using a fairly small computer, a VAX-11-
780, and a minimal amount of computer time.
Typical running times for our program on a
10)& 10 lattice were one to two hours. We believe

that we could study considerably larger two-

dimensional systems by improving the efficiency of
our computer codes or by using somewhat larger
computers. Up to now we have focused our atten-

tion on the models defined in Eqs. (1.1) and (1.2)

but there are a number of two-dimensional systems

that are of interest in condensed matter and/or
high-energy physics to which we plan to apply our
methods.

It will be a challenging problem to extend our
calculations to systems with more than one space
dimension. Directly carrying over our techniques

to higher dimensional systems would appear to be

quite costly in terms of computer time. One ap-
proach which we plan to investigate is to generate
the field configurations with an approximate deter-

minant which can be calculated rapidly. If we

denote by Dz and D the approximate and exact
determinants, respectively, then the exact expection
value of an operator A will be given by

mion response, one might take

P
D„=g 1+exp —f d rE (r)

a

P
exp — dr Eo(r)

0
(4.2)

Here, Eo(r) is the ground-state energy for a fixed

number of fermions in a frozen boson field jxi(r) I

appropriate to the boson Geld configuration at time

~. This is the first term of an adiabatic expansion.

One can easily think of other ways of approximat-

ing the fermion determinant; however, this ap-

proach may be difficult to implement because of
the exponential dependence of the determinant on

the number of lattice points.
Returning to the model studied in this paper, a

number of interesting questions remain for further

investigation. For example, does the curvature for
rQ & 1 shown in Figs. 11(a}and 11(b) reflect a po-
laronlike state or rather an alteration of the gap
5? In the zero-temperature limit, is there a critical
value of the mass M ( or Q/t) below which the sys-

tem has no gap or lang-range lattice distortion but

above which it does? Is there a critical value of A,

where the simple Peierls distorted state is no longer

the ground state? Here we have seen for a finite

ring that when M =0 there is no gap in the fer-

mion spectrum and no long-range lattice displace-

ment oscillations in D(l). However, for M finite

(Q =0.5), the N = 12 and N = 16 site spatial lat-

tices show a gap in the fermion spectrum and

structure in D(l). At finite temperature, a spatially
one-dimensional system of the type we are studying

will not have long-range order. However, at zero

temperature the quantum fluctuations may or may

not destroy such order. It will be interesting to ex-

plore the way this depends upon M and the nature

of the critical point. In addition, and perhaps as a
probe of the M-critical problem, one would want to
study the odd N lattices to see if solitons are

present. It will also be important to examine the
behavior of the two-particle Green's functions and,
in particular, to see if a gap appears in their spec-
trum.

Beyond these questions, a number of transport
problems in both the polaron and degenerate limits
come to mind. Here the first question would be to
explore ways of obtaining zero-frequency static
transport coefficients as a function of temperature.
Clearly, one would also want at the same time to
gather thermodynamic data on the entropy and

specific heat. An interesting challenge will be to
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develop useful ways of extracting finite frequency
transport coefficients from the imaginary time
results. A simple example of this would be the
reconstruction of an approximate power spectrum
P(v), Eq. (2.23) from the Monte Carlo data of Fig.
3.
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