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We develop an algorithm for determining the exact ground state properties of quantum 
many-body systems which is equally applicable to bosons and fermions. The Schroedinger 
eigenvalue equation for the ground state energy is recast as a many-dimensional integral using 
the Hubbard-Stratonovitch representation of the imaginary-time many-body evolution 
operator. The integral is then evaluated stochastically. We test the algorithm for an exactly 
soluble boson system with an attractive potential and then extend it to fermions and repulsive 
potentials. Importance sampling is crucial to the success of the method, particularly for more 
complex systems. Computational efficiency is improved by performing the calculations in 
Fourier space. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Exact solutions to the many-body Schroedinger equation are of interest as 
benchmarks for testing approximation methods and Hamiltonians. The Green’s 
Function Monte-Carlo (GFMC) [l, 21 and the related Diffusion Monte- 
Carlo (DMC) algorithms [3] accurately describe boson systems [2,4] but allow 
only a restricted treatment of fermions. The many-body wavefunction is described 
by a statistically evolving set of configurations, each of which is specified by the 
coordinates of the particles. Antisymmetrization is therefore difftcult to implement 
exactly with the simple local algorithms used to evolve the ensemble. This has 
prevented the unrestricted application of either the GFMC or DMC to fermion 
systems with more than four particles [S] or with state-dependent potentials, 
although the fixed-node approximation [3,6] allows upper bounds on fermion 
ground state energies to be determined. 

The Auxiliary Field Monte-Carlo algorithm (AFMC) discussed here [7] and the 
related method of coherent states [S, 91 allow an exact description of fermions by 
using a basis that consists of sets of single-particle wavefunctions. In the AFMC 
algorithm, the imaginary-time many-body propagator 
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filters a trial function @ to the exact ground state Y; that is, the ground state 
energy is given by 

E,= lim <@I HU(T) I @i> 
T-Too (@I U(T)(@) . (1) 

The introduction of a trial function reduces statistical errors associated with the use 
of a finite ensemble of trajectories in the evaluation. @ is, in principle, any 
wavefunction not orthogonal to Y. However, the method is tractable only if @ is a 
symmetrized (antisymmetrized) product of single-particle orbitals for bosons (fer- 
mions). 

The balance of this paper is arranged as follows. Section II details the AFMC 
algorithm. Applications to several test systems are described in Section III and Sec- 
tion IV discussed advantages and limitations of the method. 

2. THE AFMC ALGORITHM 

2.1. The Hubbard-Stratonovitch Transformation 

Our AFMC algorithm uses the Hubbard-Stratonovitch (HS) representation of 
the many-body propagator U(T). Consider the general Hamiltonian 

where 

is the single-particle density operator and 

is the kinetic energy T and a self-interaction term for bosons or fermions, which will 
be removed later. The subscripts a, p, y, and 6 represent any internal degrees of 
freedom which may be present (such as spin, isospin, etc.), as well as the spatial 
coordinates. The HS transformation of the propagator e-~ introduces an 
auxiliary field to reduce the exponential of a two-body operator (e.g., the term 
involving v in Eq. (2)) to a functional integral over an infinite set of exponentials of 
one-body operators. The transformation was originally developed to calculate the 
many-body partition function for systems containing two-body interactions [ 10). It 
has been applied in Monte-Carlo calculations of the Hubbard model on a one- 
dimensional lattice [ 1 l] and has been used in approximate mean-field solutions of 
nuclear problems [ 12-141. 
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The HS representation of the propagator U(T) is 

(3a) 

a coherent sum over an infinite set of operators U,(T). Each U, is the time-ordered 
product 

describing evolution under the one-body Hamiltonian 

The sum is weighted by the exponential, where we have used the shorthand 
notation 

The HS transformation maps an interacting particle problem to a system of non- 
interacting particles coupled to a fluctuating time-dependent external field, IV,,. 
The former particle interactions are mediated through the cr field. We represent the 
many-body wavefunction @ by a set of A single-particle wavefunctions which 
propagate individually in the external potential. The AFMC method is in some 
respects similar to a formulation used in Monte-Carlo simulations of relativistic 
field theories [lS]. In these problems, the fermion degrees of freedom are 
“integrated out,” leaving only a boson theory with an effective action (analogous to 
the HS representation). 

With the transformation of Eq. (3), we can rewrite the expression for the energy 
of Eq. (1) as a ratio of functional integrals: 

After suitable discretization this integral expression can be evaluated numerically by 
Monte-Carlo methods. 
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2.2. Discretization of the Integral 

To evaluate Eq. (4), the wavefunctions and fields must be discretized on a mesh. 
In one dimension, we bound space-time to a region 0 < t < T, 1x1 <L/2 and define 
an (N+ 1)xM mesh 

ti= (i- 1) At, i = I,..., N-k 1, At = T/N 

xi=(j-F-i) Ax, j=l,..., M, Ax = L/M 

with M even. Of course, we suppose that Ax and At are sulIiciently small so that 
effects from the discretization are less than statistical errors. Wavefunctions are 
defined on the mesh points, while the 0 field and one-body potential W are given 
on the half time points, since they determine the evolution of @ from one mesh time 
to the next. With the definition bii = a(ti- ,,*, xj), Eq. (4) can be discretized as: 

where the measure is 

since constants vanish in the ratio, the inner product is 

(a, UO)~= g E ~p~~a,(Ax)~, 
j=l k-1 

with ujk = U(X~ - xk), and 

describing one-body evolution from ti to ti+ , under the single-particle Hamiltonian 

M 
h,(xj) = -D2/2m i- 1 ujka,(Ax) 

k=l 

(D2 is the usual 3-point discretization of the second derivative). We omit the self- 
energy term, + iv(O), from h,, as this results in a constant shift of the energy scale 
for the time evolution which does not affect the right-hand side of Eq. (5). 

From the standard derivation of the Hubbard-Stratonovich transformation by 
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discretizing the time evolution [ 121, it is clear that any approximation for Ua must 
be accurate through O(dt2). We have used the Crank-Nicholson formula familiar 
from TDHF calculations [ 161, 

u 

d 

(dt) = (1 - 4kT At/h) 

(1 +&Jr/fi)’ 
(6) 

which has the further advantage of not amplifying those components of Q1 
associated with the largest-modulus eigenvalues of h,. The actual application of the 
Crank-Nicholson formula involves the inversion of a tridiagonal matrix. The usual 
Gaussian elimination and backward substitution recursion relations accomplish this 
efficiently in two sweeps through the mesh of size M [17]. 

2.3. Details of the Calculation 

The discretized expression for the energy is a form amenable to Metropolis 
Monte-Carlo evaluation 118). To make this explicit, we rewrite the integral as 

E,, is the average of the energy estimator (0 [ HU,( T) / @)/( rf, 1 U,(T) / Qj ) over 
all field configurations, weighted by 

P[o] =exp 
( 

i ,f ( 0, uo)idt (@I u, I@). 
,=I ) 

The Monte-Carlo evaluation of Eq. (7) is equivalent to many evolutions of the 
system in a random mean-field. 

The Metropolis algorithm requires that P[o] be positive definite. This is satisfied 
by symmetrized product trial functions (bosons) and by spin- and/or isospin sym- 
metric Slater determinants (fermions) interacting through a state-independent 
potential. If P[o] is not positive definite, JPl can be used as the weight and the sign 
Z’/lPl appended to the energy contribution from each configuration. However, even 
here P must be predominantly of one sign for the denominator in Eq. (7) to remain 
large so that good statistical accuracy can be achieved. While we have no guarantee 
that P is well-behaved in the general case, our results for fermion systems treated by 
the AFMC algorithm and by other methods [ 193 offer some encouragement on this 
point. 

The integrals over o in Eq. (7) will not converge unless (a, ua), is negative 
definite; i.e., the eigenvalues of vjk are all less than zero. This is equivalent to requir- 
ing that all Fourier components of v(x) are negative. While this is certainly not true 
in general, it can often be guaranteed for a given u by adding an appropriate two- 
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body interaction term to H. This makes the eigenvalues of the effective ujk negative 
definite and shifts E,, in a trivial way (see Section 3.4). 

An appropriate choice of the trial wavefunction can be determined through the 
use of approximate solutions or by using a physically likely basis set with 
parameters determined variationally. The initial configuration of the c field is taken 
to be the stationary phase approximation in the Hartree limit at all time slices: 

(Tinit(Xj3 li) = aO(xj) = $ I$l(xj)l *3 (8) 
I= 1 

for all fi. This is just the particle density; i.e., the mean-field generated by all of the 
particles in the static limit. 

We update the o field for all space points at a single time value before the 
Metropolis acceptance/rejection test is applied. Energy contributions are calculated 
only after this has been done for all times; i.e., at the end of a sweep. There are two 
computational simplifications that result from this method of performing the 
Metropolis random walk. The weight function in discretized form is 

P[o]=exp 
( 

+dr 2 ((~,ucr)~ 
) 

(@I U,UN-,... ui... u*u1 I@) 
i= 1 

where lJi E e ~ hdti)dr is the evolution operator from ti to ti+ r. Considering the 
exponential factor, it is evident that changes in the c field at a fixed time point ti 
affect only one term in the sum, giving a net contribution to P[ol,]/P[a,] of 

ew dx dx’ 0,(x, ti) u(x - x’) CT[(X’, tJ 

- 
s 

dx dx’ c,,(x, ti) u(x - x’) oII(x’, ti) I) 
the e fields at other time slices can be ignored. 

A further gain in computational time is achieved by evolving the trial 
wavefunction (@ 1 from the left once before the Monte-Carlo sweep begins and 
storing the resulting wavefunctions (@ ) U, U,,- , . . . Ui for all i. During the sweep, 
the “changed” fields (T’ are used to evolve the wavefunction forward, so that at any 
time i, the wavefunction U:- I Vi- 2. . . U; ( a) is known (17; describes evolution 
under the “new” potential determined by a’). Then, to perform one step in the 
Metropolis walk, only a single evolution, U,f, and the calculation of two overlaps of 
already known wavefunctions 

(@I u,*.* u,+, u:u;-,..* u; I@) 
(@I UN... Ui+,UiiJ-,~~~ u; I@)’ 

are necessary to determine the matrix element contribution to the weight ratio. 
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To improve the efficiency of the Metropolis random walk, the AFMC algorithm 
incorporates a form of importance sampling-a biasing of the trajectories beyond 
that determined by the weight factor W. The trial sigma field 6’ is randomly 
generated from the old field by 

fJ;‘=o;+6~,A~ (9) 

where j and i indicate points on the space-time mesh, 6 is a uniformly distributed 
random number between - 1 and 1, and Aa is a constant factor used to increase or 
decrease the overall size of the random steps. A reasonable choice for q has been 
found to be the initial sigma field, oO, so that fractional changes are being made in 
the field. It turns out to be practical to choose Aa so that the Metropolis accep- 
tance ratio is between 30 and 70%. This enables the e field distribution to converge 
to the asymptotic limit in a reasonable amount of computer time. Of course the 
precise value for Aa is highly dependent on the choice of the importance sampling 
scheme. 

We perform error analysis assuming standard Gaussian statistics [20]. The 
energy estimators E(vtthe value after the vth sweep-must not be affected by the 
initial configuration of the cr field. Therefore, a thermalization of v0 sweeps is perfor- 
med before contributions to the energy average (i?) are taken. For v larger than v,,, 
E(v) should differ from E by no more than expected statistical deviations. Once the 
initial relaxation has occurred, the precision of the energy estimate is increased by 
averaging at many subsequent times. Of course, for the averages to be meaningful 
and for the calculation of the standard deviation to be valid, statistically indepen- 
dent values must be used. Since each configuration is generated from the previous 
one, some correlations are to be expected. This can be taken into account by per- 
forming a sufficient number of sweeps, r,,,,, between each contribution to the 
average. The correlation length rcorr is determined by the number of sweeps for 
which the autocorrelation function of the energy estimators falls to less than 0.1. 
The relaxation times and correlation lengths are strongly affected by the choice of 
the importance sampling field 7. 

3. RESULTS 

3.1. Bosom with a a-function interaction 

For a first investigation, we have applied the AFMC method to a system which is 
exactly soluble and has been studied in some detail: A bosons of mass m in one 
dimension, interacting with each other through an attractive zero-range potential of 
strength V,. The complete Hamiltonian is given by 

H= 

1 

1 “p: ---v, i=, 2m 2 i ifI= 1 6(x,-xj)+;mAR2 (; c > 

2 

xi/A 
, (10) 
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where we have added a harmonic oscillator of frequency 51 to confine the center-of- 
mass motion. This additional term contributes both one- and two-body pieces to H, 
and it is easy to show that the effective (a, ua) is negative definite provided 
Q < (6A V0/mL3)“*. The oscillator frequency is also bounded from below by the 
requirement that the oscillator length, (l/m&2) ‘I* be smaller than the mesh size, L, , 
so that the mesh boundaries do not affect the solution. When this is satisfied, we are 
free to choose zero boundary conditions for the single-particle wavefunctions at 
x = &L/2. 

The Hamiltonian (10) is exactly soluble for 52 = 0 [21]; the eigenvalue of its only 
bound state is 

E, = -A(A - l)(A + 1) I’$n/24. 

The system can also be solved in the Hartree approximation provided that the 
oscillator term (which gives only a very small contribution to the Hartree energy 
for the parameters we have used) is not treated self-consistently. The Hartree energy 
and wavefunction are 

E, = n2m!S2b2/24A - A(A - 1)2 F$m/24 

@(x, ,..., xA) = fi m/cash bxi 
i=l 

(11) 

(12) 

where b = m V,(A - 1)/2. This is the trial wavefunction we have used in the AFMC 
calculations. The spurious center-of-mass energy makes up exactly half of the dif- 
ference between the Hartree and exact ground state energies (B = 0), with all but 
0.5% of the remaining gap accounted for by the leading term in the RPA 
chain [21]. 

The AFMC calculation is equivalent to that for a one-particle system: the many- 
body wavefunction consists of A identical one-body functions propagating under 
identical operators U,. Only one single-particle wavefunction and one (r field are 
required for the energy evaluation. 

We chose physical units appropriate to nuclear systems, ti’/m = 41.47 MeV-fm2 
and V0 = 41.47 MeV-fm, and studied the A = 6-, lo-, and 20-particle systems. The 
parameters are given in Table I. We used a mesh of 30 spatial points and up to 
160 time points. Standard checks on space and time discretizations were performed. 
Typical values of At were on the order of 10-26-10-25 s and Ax was about 0.1 fm. 
The center-of-mass frequency was taken to be f&? = 25 MeV, resulting in a shift of 
the exact ground state energy, E,, by the zero-point energy, $fifi = 12.5 MeV. To 
check that the system was properly confined by this potential, different choices of Q 
were tested for total times T in the asymptotic limit. The resulting values for the 
ground state energy E(T) varied in the expected way. 

Both the initial 0 field and the q importance sampling field were set to the initial 
particle density. The size of changes in U, weighted according to the initial field, 
ranged from Aa = 2.0 to 5.0, for an acceptance ratio between 0.50 and 0.60. A ther- 
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TABLE I 

Parameters for Systems of A Bosom, Interacting through a Delta Function Potential 

A 6 6 10 10 20 20 

AI 
(X 1o-25 s) 

N 
Ax (fm) 

M 
hi2 (MeV) 
i (MeV) 
rc.m (fm) 

AU 
R act 
Tcorr 

(trajectories) 
(trajerZ;ories) 

1.0 2.5 0.5 1.0 0.05 0.10 

125 50 160 120 160 130 
0.15 0.15 0.10 0.10 0.04 0.04 
30 30 30 30 30 30 
25 25 25 25 25 25 

- 25.40 - 25.40 - 39.08 - 39.08 -41.26 -41.26 
0.52 0.52 0.41 0.41 0.29 0.29 
5.0 3.0 3.2 2.1 3.5 2.4 

0.55 0.56 0.55 0.58 0.55 0.55 
25 25 20 20 25 25 

loo0 1000 1000 loo0 1000 loo0 

(trajezories) 6ooa 6000 6000 6ooo 6000 6ooo 

Nore. The mesh was defined by N AI x (M - 1) Ax, the harmonic oscillator by the frequency Q with 
corresponding length rc,,,,, and the random walk by step size Au yielding an acceptance ratio of R,,,. 
Energies were calculated every rcorr trajectories from trajectory v, to Y,; i, is the non-trivial eigenvalue of 
the potential. 

malization interval of some 1000 sweeps was adequate and energies were taken over 
the next 5000 sweeps. The correlation length, rcorr, was 2&25 trajectories for the 
parameters chosen. 

Results are shown in Figs. 1-3, in the form of plots of E(T). The dashed and dot- 
ted lines indicate the Hartree and exact energies, respectively, including the har- 
monic oscillator contribution. Two energy estimators were used: the standard 

and the equivalent form with the Hamiltonian on the right, 

For reference, results for a time step At = 1.0 x 10e2’ s, where the discretization was 
slightly too coarse for proper evolution, are displayed in Fig. 2. The correct size for 
At was determined by performing the AFMC with various size time steps and 
checking that the results converged to the same value. 

In all three cases, E(T) shows an initial relaxation and then asymptotically 
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FIG. 1. E(T) for 6 bosom interacting through a delta function potential. Eu = -259.19 is the Har- 
tree energy and E,= -350.36 the exact ground state energy, including the center-of-mass harmonic 
oscillator. Two different time steps were used: q = 1.0 x 1.0-25 s and d = 2.5 x 1O-25 s. Parameters are 
given in Table I. 
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FIG. 2. E(T) for 10 bosons interacting through a delta function potential. En = -1399.61 is the Har- 
tree energy and E,, = -1698.14 the exact ground state energy, including the center-of-mass harmonic 
oscillator. Two different time steps were used: 0 = 1.0 x 1O-2s s and A = 0.5 x 1O-25 s. Parameters are 
given in Table I. 
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FIG. 3. E(T) for 20 bosom interacting through a delta function potential. E, = -12475.6 is the Har- 
tree energy and E,= -13776.3 the exact ground state energy, including the center-of-mass harmonic 
oscillator. Two different time steps were used: 0 = 1.0 x 1.0m26 s and A = 0.5 x 1O-2b s. Parameters are 
given in Table I. 

approaches a value which fluctuates around the expected result for each A. This 
convergence becomes more rapid with increasing numbers of particles due to the 
spectrum of excited states; the energy gap to be resolved increases with increasing 
A. Consider Fig. 4, where the logarithm of the difference between E( 7’) and its 
asymptotic value is plotted for A = 10. Two different relaxation scales are clearly 
seen. The rapid initial relaxation is related to the energy gap between the intrinsic 
ground state and the excited states. If the trial wavefunction @ can be written 
approximately as a linear combination of the ground (E,) and first excited state 
(E,) consisting of A - 1 bound particles plus one particle in the excited continuum 
at zero energy, then a plot of 

as a function of time T will have slope - AE = (E, - E,). In Fig. 4, this slope is 
indicated by the dotted line. It is a lower bound on the relaxation, since other 
excited states also contribute. The dashed line is associated with the relaxation of 
the center-of-mass motion in the harmonic oscillator potential. While the 
asymptotic region is not reached for times T used in the calculation, T is long 
enough for the oscillator energy to be resolved within statistics. 

These results provided an encouraging demonstration that the AFMC method 
could describe the ground state energy of a simple many-boson system. A typical 
calculation of some 60 time steps took 4 hours of CPU time on a VAX 1 l/750 
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FIG. 4. Plot of ln[E( T) - &,/En - E,] for 10 bosons interacting through a delta function potential. 
Two different time steps were used: L7 = 1.0 x lo-*’ s and A = 0.5 x 1O-25 s. The dotted line shows the 
relaxation due to the energy gap between the ground and the first excited state. The second relaxation 
due to the center-of-mass oscillator is indicated by the dashed line. Parameters are given in Table I. 

without floating point accelerator (about 5 minutes on a CDC 7600). It was 
noteworthy that the computational effort did not increase with the number of par- 
ticles in the system. 

3.2. Fermions 

The AFMC formalism for fermion systems is straightforward. If the potential is 
independent of internal degrees of freedom, uora = v, a total sigma field and density 
can be defined: 

(13a) 

P(x) = c P,(X)? (13b) 
where the sums are over the internal degrees of freedom. In this case, the 
propagator written in terms of the redefined fields, 

u= j D[cY(x, t)] e (l/2) J 6(X) u(x-.Y’) 8(X’) u- 
CT 

(14) 
u, = e-hbT= Tre-Idt[K+Sd.~d.~‘~(.~)v(.r-J’)p(.~’)] 

2 

becomes formally identical in appearance to the case without internal variables. As 
in the boson case, only one e field is necessary-i.e., all the individual ea are sub- 
sumed in 5, which determines the evolution of the trial wavefunction. For a more 
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general interaction, all the fields 6, must be kept separately, each being used to 
evolve the corresponding single-particle wavefunctions independently-the problem 
then involves simultaneous solution of several coupled systems of the form con- 
sidered here, one for each of the non-spatial degrees of freedom. 

The fermion wavefunction was represented by a Slater determinant. Since there is 
nothing intrinsic to the propagator formulation or the Crank-Nicholson 
approximation that guarantees that fermion statistics will be preserved, we perform 
a Schmidt orthogonalization of the spatial states after each step of the time 
evolution. This orthogonalization is equivalent to a change of basis at each time 
step and guarantees exact antisymmetric of the wavefunction. The Metropolis 
weight factor and the energy estimator now involve calculations of determinants 
and inverses of N x N matrices [22], operations which can become very time-con- 
suming for large systems involving few degeneracies. 

For a test case of the fermion formalism we chose an exponential potential (i.e., 
a one-dimensional Yukawa potential): 

v(x) = uo e- I*l/u 
2a ’ 

(15) 

where VO is the strength and a the range of the potential. The main computational 
complexity entailed by a finite-range interaction is the evaluation of the convolution 
integral 

W(x) = j” v(x - x’) a(~‘) dx’. 

For the exponential potential, however, this can be performed easily by noting that 
W(X) satisfies a Helmholtz equation, 

1 VO 
W(x) ---g W(x) = - a(x), 

a2 

which can be discretized as a tridiagonal matrix equation and solved by Gaussian 
elimination and backward substitution. 

We chose a spin-isospin degenerate system. Such systems can be viewed as con- 
taining pairs of protons and neutrons with spin up and down. This choice has cer- 
tain advantages. First, it allows a test of the combined field formalism of Eq. ( 13), 
Second, a larger number of particles are involved for the same amount of computer 
time, helping to ensure that the mean-field picture is valid. Indeed, attempts to 
apply the AFMC to systems of two particles fail to yield convergence with good 
statistics. Finally, the weight factor for a system with four spin-isospin degrees of 
freedom can immediately be seen to be positive definite, since all matrix elements 
are fourth powers of determinants of spatial overlap integrals and so are non- 
negative. This is not true a priori for non-degenerate fermions or for untilled levels. 



14 SUGIYAMA AND KOONIN 

We took the constants for the potential to be V0 = 41.47 MeV-fm and a = 0.8 fm, 
values of typical nuclear strengths and ranges. Systems of 4, 8, and 12 particles were 
treated, corresponding to 1 (bosons), 2, and 3 spatial orbitals. Table II contains the 
sets of parameters we used. Mesh sizes varied from 40 to 60 points, with the spatial 
lattice becoming slightly more closely spaced and extended in range 
(dx~O.2CLO.25 fm) for the multiple level systems. Time lattices of up to 160 points 
were used, with at least two values of dt tested for each system, ranging between 
1O-25 and 10pz4 s. We verified that our results did not depend on the discretization. 
Standard checks on the results were made as described previously. 

As before, a harmonic oscillator potential was added to the Hamiltonian to con- 
fine the center-of-mass. This makes an exact determination of the eigenvalues of the 
total potential difficult. However, the requirement that the exponent (a, ua) be 
negative definite can still be met if the strength of the harmonic oscillator is not too 
great. For the system we studied, U2 was taken to be 10 MeV and the sign of the 
exponent was checked explicitly during the calculation. 

The trial wavefunction 0 was given by a Slater determinant of orthogonal states 
in a harmonic oscillator potential, the length parameter, p, set variationally to 
minimize the energy (omitting the center-of-mass oscillator potential). AS a check 
on the trial wavefunction and on the energy convergence, the AFMC was also run 

TABLE II 

Parameters for A Spin-Isospin Degenerate Fermions Interacting through an Exponential Potential 

A 

Af( x lo-= s) 
N 

Ax (fm) 
M 

Iif2 ( MeV) 
rc.m. Pm) 

Trial 
wavefunction 

B (fm) 
A0 

R act 
‘Tcorr 

(trajectories) 
“i 

(trajectories) 
“f 

(trajectories) 

4 4 4 8 8 12 12 

20.0 40.0 40.0 2.5 5.0 2.5 5.0 
50 70 70 140 100 160 100 

0.25 0.25 0.25 0.20 0.20 0.20 0.20 
40 40 40 50 50 70 70 
10 10 10 10 10 10 10 
1.0 1.0 1.0 0.72 0.72 0.59 0.59 

g g g 
1.4 1:4 of9 1:4 I?4 1.6 1.6 
8.0 6.0 5.5 14.0 11.0 12.0 8.0 

0.50 0.50 0.50 0.55 0.55 0.51 0.50 
25 25 25 25 25 25 20 

1000 1000 1000 1000 1000 1000 loo0 

6000 6000 6000 6ooo 3000 3000 3ooo 

Note. The mesh was defined by N AI x (M - 1) Ax, the harmonic oscillator by the frequency Q with 
length T~.~., and the random walk by the step size Au yielding an acceptance ratio of R,,. Energies were 
calculated every T,,,, trajectories from trajectory vi to vp The trial wavefunction was specified to be a 
determinant of either the harmonic oscillator (g) or delta function solutions (c) with parameter b = b-‘. 
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for the 4-boson system using the trial wavefunction l/cosh(bx), the Hartree 
wavefunction for the delta function potential. The initial (T field and the q field were 
once again taken to be the initial particle density. 

Results are shown as plots of E(T) in Figs. 5-8 for the 4-, 8-, and 12-particle 
systems. Variational energies for the trial wavefunction, including the center-of- 
mass oscillator contribution, are indicated by the dotted lines. Note that in all cases 
the asymptotic energies include a 5-MeV contribution from the center-of-mass 
oscillator. All plots show the same initial relaxation and asymptotic approach to a 
limiting energy around which the remaining points fluctuate, as in the previous 
boson case. Figure 6 compares the results for the two different trial wavefunctions; 
both provide a quick resolution to the same ground state energy. Typical values of 
5 COW were 2&25 trajectories, as in the delta function case, implying that the spatial 
range of the potential did not translate into longer correlation lengths. The initial 
relaxation was taken to be 1000 sweeps, with energies taken over the next 2000. 

The total time needed to resolve the ground state energy was roughly T= A/E, in 
all three cases-i.e., T was shorter for the systems with more particles and larger 
binding energies. The number of discrete time steps was comparable to that in the 
boson case, so that the computational time was increased only by the additional 
time needed to evaluate the convolutions and a multiplicative factor depending on 
the number of orbital states involved. Typical computational times for the 3-level 
system were on the order of 6 hours of CPU time for the same VAX 11/7.50 with 
floating point accelerator. 

1.3 , 

0 100 200 7°C) 
T  (x10-?) 1 

FIG. 5. E(T) for 4 spin-isospin degenerate fermions interacting through an exponential potential. 
E,,, = -35.8 MeV is the variational energy. Two different time steps were used: 0 = 4.0 x 10mz4 s and 
A = 2.0 x 10 -” s. Parameters are given in Table II. 

59? IhR'l-2 
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-34 , 

-42 4 -1 
0 100 zoo 300 

T  (~lO-‘~s) 

FIG. 6. E(T) for 4 spin-isospin degenerate fermions interacting through an exponential potential. 
E,,, = -35.8 MeV is the variational energy. Two different trial wavefunctions were used: 0 = harmonic 
oscillator and A = delta function solution with the size of the time step being 4.0 x 10dz4 s in both cases. 
Parameters are given in Table II. 
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FIG. 7. E(T) for 8 spin-isospin degenerate fermions interacting through an exponential potential. 
Eva,= -96.5 MeV is the variational energy. Two different time steps were used: 0 =5.0= 10-2J s and 
A = 2.5 x 10mr5 s. Parameters are given in Table II. 
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FIG. 8. E(T) for 12 spin-isospin degenerate fermions interacting through an exponential. 
E,,, = - 164.4 MeV is the variational energy plus non-self-consistent center-of-mass harmonic oscillator 
energy. Two different time steps are used: Cl = 2.5 x lo-*’ s and d = 5.0 x 10mz5 s. Parameters are given 
in Table II. 

3.3. Sampling u in Fourier Space 

Several considerations suggest an improvement to the Auxiliary Field Monte- 
Carlo method discussed so far. The method used in the previous sections has the 
disadvantage of resulting in extremely irregular u fields. This is caused not by insuf- 
ficient resolution in the space discretization, but rather is due to the Metropolis 
walk itself, in which random, uncorrelated changes are made at every mesh point. 
The physical system is not expected to fluctuate on this scale. Moreover, the 
integrability of such extremely erratic functions becomes rather questionable. The 
spatia1 algorithm aIso appears somewhat inefficient, as can be seen by considering 
the nature of the importance sampling field ‘1. This suggests that a faster random 
walk might be generated by making correlated changes of the field at all space 
points at one time slice. 

We have therefore investigated an alternative algorithm using a Fourier decom- 
position of the fields and propagator: 

M-l 

a(x, t) = C sin(2gnx/l) a,(t), /xl < L/2 (16) 
q=l 

U(T)=(D[e(k)]exp l~dt~~o*(k,I)u(k)a(k,t) 
0 k > 

dt c o*(k r) u(k) dk t) 
k 

(17) 
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where p(k) is the density operator and D[a(k)] is the measure of integration. The 
sine decomposition imposes zero boundary conditions on the (r field at the ends of 
the mesh. The wavefunctions were again simple products (bosons) or Slater deter- 
minants (fermions), expressed in terms of their Fourier components. In actual 
calculations, a fast Fourier transform rather than a sine series decomposition was 
used. 

The Metropolis random walk was performed using an importance sampling field 
Y/~ which weighted Fourier components of 0 rather than its values at individual 
mesh points. Since it seemed likely that only the low- and intermediate-frequency 
components of G contribute significantly to the evolution, calculations were made 
with Q, fixed (q, = 0) for q > N4; N, was then increased until the energy remained 
the same within statistical errors. 

The spatial and Fourier AFMC importance sampling algorithms were compared 
for the case of 10 bosons interacting with the exponential potential of the previous 
section. Table III lists the various parameters used. The mesh contained 64 space 
points with ,4x = 0.15 fm and up to 180 time steps of size dr = 5.0 x 10Pz5 s. The 

TABLE III 

Parameters for A = 10 Bosom Interacting through an Exponential Potential 

Spatial 
importance 
sampling 

Fourier 
importance 
sampling 
‘Iptp 

Ar (x 1O-25 s) 
N 

Ax (fm) 
M 

fis2 (MeV) 
rc.m. (fm) 
B (fm) 

N4 
Al7 

R act 
Tcorr 

(trajectories) 
Vi 

(trajectories) 

Vf 
(trajectories) 

5.0 
160 
0.15 
64 

10.0 
0.65 
1.5 

All space points 
changed 

8.5 
0.53 
40 

loo0 

3000 

5.0 
140 
0.15 
64 

10.0 
0.65 
1.5 

10 
27.0 
0.56 
40 

1000 

Note. The mesh is defined by N At x (M - 1) dx, the harmonic oscillator by the frequency Q with 
length rc.m., and the random walk by the step size Aa yielding an acceptance ratio of R,,. Energies were 
calculated every rcorr trajectories from trajectory v, to v,. The harmonic oscillator trial function 
parameter is fi. The importance sampling schemes used are indicated, with only the lowest N, frequen- 
cies involved in the random walk. 
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FIG. 9. Comparison of E(T) for spatial and Fourier space importance sampling for a system of IO 
bosons interacting through an exponential potential. The points 0 indicate spatial sampling while A 
indicates Fourier decomposition sampling with frequency importance sampling given by the trial 
wavefunction. Parameters are given in Table III. 

center-of-mass harmonic oscillator was chosen to have strength &2 = 10 MeV and 
the trial function was taken to be a product of harmonic oscillator basis states with 
the length parameter determined variationally. Energies were calculated over 2000 
trajectories after a relaxation of 1000 sweeps. 

Results are shown as Fig. 9 as a plot of E(T). Note that the center-of-mass har- 
monic oscillator shifts the true ground state energy by 5 MeV. Both calculations 
yielded the same ground state energy, with a total time for convergence on the 
order of 4.0 x 10 p23 s. Correlation lengths were not significantly different for the 
two methods-statistical independence was assured by calculating the energy 
estimators only every 40 sweeps of the mesh. 

A considerable gain in CPU time was possible working in Fourier component 
space by eliminating the convolution integrals in the potential. The spatial con- 
volution took about 50% of the CPU time (more in the case of more complicated 
interactions). There was also an improvement in efficiency for Fourier importance 
sampling because only the 10 lowest Fourier components had to be updated to 
obtain the results shown, rather than c values at each of the 60 mesh points. The 
limit on Nq we found implied that significant length scales were on the order of 
1.0-2.0 fm-a reasonable result for an exponential potential of range 0.8 fm. 
Overall, the Fourier space calculations were about twice as fast as those of the 
spatial algorithm. 

The case of 12 spin-isospin degenerate fermions with an exponential interaction, 
calculated earlier, was treated by various Fourier decomposition algorithms and the 
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TABLE IV 

Parameters for A = 12 Spin-Isospin Degenerate Fermions Interacting through an Exponential Potential 

Spatial 
importance 
sampling 

Fourier 
importance 

sampling 
trial vq=uq 

Fourier 
importance 
sampling 

qq- -1 

Ar (x 1O-25 s) 
N 

Ax (fm) 
M 

fit2 (MeV) 
b (fm) 
B (fm) 

N4 
AU 
R acc 
Tcorr 

(trajectories) 

(trajeZories) 

“J’/ 
(trajectories) 

2.5 
160 
0.20 
70 

10.0 
0.59 
1.6 

All space points 
changed 

12.0 
0.51 
25 

looo 

2.5 2.5 
100 120 
0.22 0.22 
64 64 

10.0 10.0 
0.59 0.59 
1.6 1.6 

10 10 
32.0 16.0 
0.52 0.52 
125 18 

1000 

3000 

1000 

3000 

Note. The mesh was detined by N At x (M- 1) Ax, the harmonic oscillator by the frequency Q with 
length T=,~., and the random walk by the step size Au yielding an acceptance ratio of R.,. Energies were 
calculated every ~~~~~ trajectories from trajectory vi to v? The harmonic oscillator trial function 
parameter was /?. The importance sampling schemes used are indicated, with only the lowest Nq frequen- 
cies involved in the random walk. 

results were compared. Parameters are given in Table IV for the spatial and two 
Fourier importance sampling functions: 

tjs = IcTpy, q<N, Wa) 
and 

vq = 1.0, q-=N,. (18b) 

The mesh parameters, the trial wavefunction, and the initial condition on the r~ field 
were as described previously. 

Energies calculated over 2000 trajectories after a 100 trajectory thermalization 
are shown in Fig. 10. Note that the actual ground is 5 MeV lower, after the con- 
tribution from the center-of-mass oscillator is removed. Only the 10 lowest frequen- 
cies were used in the Fourier space calculations (N, = 10). Convergence to the 
asymptotic energy occurred after a total time T= 3.0 x 1O-23 s for spatial impor- 
tance sampling and for the Fourier weighting field of Eq. (18b). 

The correlation lengths for the three choices of importance sampling showed 
significant differences. For rlq = 1, tcorr = 18 sweeps, they were some 30% smaller 
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T  (~10'~s) 

FIG. 10. E(T) for 12 spin-isospin degenerate fermions interacting through an exponential potential. 
The 0 points are identical to those in Fig. 8, and the A and the diamonds show Fourier decomposition 
sampling with l/q and uniform frequency importance sampling, respectively. All three used a time step of 
2.5 x 10mz5 s. Parameters are given in Table IV. 

than for the spatial weighting method and 80% less than for the case q4 = oFia’. This 
implied that the importance sampling field of Eq. (18a) was a poor choice. In fact, it 
is apparent from Fig. 10 that thermalization was not achieved for a small number of 
time steps, which is not surprising, as a relaxation period of only eight correlation 
lengths (1000 trajectories) was used. 

The sigma fields remained erratic, though slightly smoother than before. 
However, an examination of the one-body potential showed a set of roughly sym- 
metrically situated potential wells, reflecting the density of the three spatial orbitals. 

These two examples indicate the critical nature of importance sampling in 
establishing an efficient algorithm. A Fourier space scheme using a proper choice of 
qy produces a significantly faster random walk, by changing Fourier components 
rather than individual field values. In general, the autocorrelation test eliminates 
the worst choices for the importance sampling field. However, it does not indicate 
the optimal choice of I], since it cannot distinguish between schemes changing the 
field at single points and those performing spatially correlated changes. 

3.4. Repulsive Potentials 

The application of the AFMC algorithm to systems involving repulsive potentials 
has an additional difficulty due to the negativity condition on the inner product 
(a, ua) in the Metropolis exponent (see Eq. (4)). For systems containing repulsive 
potentials, it may not be possible to satisfy this condition for any choice of !2. We 
have considered two methods for dealing with such systems. 

The first uses the same formulation as before, adding an appropriate two-body 
interaction term to the Hamiltonian to ensure that the eigenvalues of the resulting 
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effective potential are negative definite. Consider the effect of an additional potential 
which does not affect the energy: 

Py(x, x’) = a,, 6(x-x’), (19) 

where C is some constant. This potential contributes a term in j dx C, Ca,(x) p,(x) 
in h, and an additional term to the exponent in the Metropolis weight 

(0, Urr)add = c 1 dx c o”,(x). 
(2 

Since this has the sign of C, by choosing the strength of the potential to be suf- 
ficiently negative, the exponent can be forced to satisfy the negativity condition. 
Bosons can be incorporated into the formalism by treating them as fermions with A 
internal degrees of freedom. 

To test this method, we chose a system which has been solved using standard 
techniques in a study of meson-nucleon field theory [23]. For static baryons, the 
scalar and vector meson interactions reduce to the sum of attractive and repulsive 
Yukawa potentials that reproduce the basic features of the nucleon-nucleon force. 
In one dimension, the static potential is given by 

(20) 

with g,, g, the vector and scalar coupling constants and mv, m, the meson masses. 
The parameters were set to provide a reasonable nucleon-nucleon potential with a 
repulsive core, V(x=O) > 0, and a typical nuclear core radius of x, = 0.4 fm 
(defined by V(x,) = 0). The range of the potentials were fixed by the mass of the 
pion, m, = m, = 140 MeV, and the omega meson, m, =m, = 783 MeV. The 
binding energy per particle for nuclear matter in the mean-field approximation was 
taken to be 16 MeV at saturation. These considerations were sufficient to specify 
g, = 196 MeV and g, = 890 MeV. 

Table V lists the parameters of a system of four non-degenerate fermions 
interacting through this potential. The calculation was performed using both spatial 
and Fourier importance sampling. The mesh consisted of 150 points of spacing 
Ax = 0.08 fm, the time interval was At = 1.0 x 10 -24 s, and up to 60 time steps were 
used. All standard tests on the parameters were performed. The same trial 
wavefunction was used as for the purely attractive potential and the initial con- 
figuration of the 0 field was again taken to be the trial particle density, as was the 
importance sampling field. Only the 15 lowest-frequency components in the Fourier 
decomposition of r~ were changed during the random walk. Results were checked to 
be the same within statistical errors when more components were included. 

The results shown in Fig. 11 are in agreement with the value obtained in [23], 
E- 0- -64.7 + 0.7 MeV, when the l-MeV center-of-mass oscillator energy is taken 
into account. Both importance sampling schemes converge to the asymptotic energy 
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TABLE V 

Parameters for A = 4 Fermions Interacting through an Attractive and Repulsive Exponential Potential 

Al (x 1o-24 s) 
N 

Au (fm) 
A4 

M2 (MeV) 
rc.m (fm) 
B (fm) 

N, 
AU 
RKX 
rC”rr 

(trajectories) 
v  

(trajectories) 
“I 

(trajectories) 
Add (MeV) 

Spatial 
importance 
sampling 

1.0 
100 

0.08 
150 
2.0 
2.3 
1.3 

3.5 
0.54 
45 

1000 

3ooo 

-200 

Fourier 
importance 
sampling 

flq 
~ pi 

1.0 
100 
0.09 
128 
2.0 
2.3 
1.3 
15 
3.0 

0.52 
30 

1000 

3ooo 

-200 

Note. The mesh was defined by N dr x (M- 1) dx, the harmonic oscillator by the frequency Q with 
length T~.~., and the random walk by the step size Au yielding an acceptance ratio of R,,. Energies were 
calculated every rcorr trajectories from trajectory Y, to v,. The harmonic oscillator trial function 
parameter is /I. The importance sampling schemes used are indicated, with only the lowest N, frequen- 
cies involved in the random walk. I’,,, is the strength of the additional potential required by the 
negativity condition on the Metropolis exponent. 

in a time on the order of T= 1.0 x lo-** s. However, the results from the spatial 
weighting process fluctuate considerably. The value of T suggests that an energy 
gap on the order of 10 MeV is being resolved; however, this is only a rough 
estimate as there is no way of identifying the various excited states for this interac- 
tion. We found a significant difference in the correlation lengths for the two impor- 
tance sampling methods: the spatial weighting scheme had r,,, half again as large 
as that for the ylq case. This was another indication that Fourier importance sampl- 
ing was more efficient. Further, in this sampling scheme, the one-body potential 
was a relatively smooth function showing several symmetrically placed barriers 
separating potential wells where the particle density concentrated. The center-of- 
mass oscillator compressed the overall radius and increased the density in the cen- 
ter. 

The CPU time required for the Fourier sampling calculation was 12 hours on the 
VAX 11/750 with floating point accelerator and roughly twice that for spatial 
importance sampling. The major diffkulty with extending this calculation to 
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-60 , 

FIG. 11. E(T) for 4 fermions interacting through a combined attractive and repulsive exponential. 
The time steps were: Cl = 1.0 x lo-l6 s with the changes in the u field performed using Fourier decom- 
position importance sampling given by the trial wavefunction, and A = 2.5 x 10 m26 s using spatial sam- 
pling. Parameters are given in Table V. 

systems containing more particles is that computer time is proportional to the num- 
ber of particles, even for systems with internal degrees of freedom. However, the 
convergence and statistics are expected to be better for such systems. 

Our second method for treating repulsive potentials uses a formulation involving 
complex fields. The extra degree of freedom provided by the imaginary part of the 
field allows the construction of the exponential factor (a, va) in such a way as to 
satisfy the negativity condition. The energy is then calculated using the expression 

I D[o, a*] e(“2)J(0*v0) 
E, = lim 

‘(@I u, ‘@)’ R;;;l’;y@!!q 
(21) 

T-PO 

f 

Re(@l i I@) ’ 
Nu, o*l e(1’2)J(a”o) I(@1 U, I@>1 ,(@, u 

0 
yQjl 

an expression for the ground state energy as a ratio of the average of two quan- 
tities-the energy estimator (@I HU, I @)/I (@ 1 U, I@) and the signature 
estimator (@ 1 U, 1 @)/I (@ I U, I@ ) I. We tried this algorithm with both the spatial 
and the Fourier decomposition importance sampling schemes. The results were not 
good; approximate energies were obtained but with poor statistics. This was due to 
cancellations in the denominator integral. Apparently, to use this scheme, a more 
clever importance sampling for biasing the random walk is necessary. 

4. DISCUSSION 

The auxiliary field formalism provides a method for determining the exact 
ground state energies of many-body systems. In principle, the numerical techniques 
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we have developed can be used to solve systems with a variety of interactions. In 
practice, of course, there are limits imposed by the amount of computer time 
required. We tested the AFMC on several boson and fermion systems in one 
dimension, involving both attractive and repulsive potentials. While the formalism 
is identical in both cases, an antisymmetrization procedure was used for fermions to 
maintain proper statistics. The ground states energies found show good agreement 
in cases where results are known from other techniques, whether exact solutions or 
other Monte-Carlo values. They are an encouraging demonstration that the AFMC 
algorithm can be applied to a number of many-body systems. 

A principal advantage of the AFMC method is its proper treatment of fermions. 
The HS representation of the propagator allows the system to be described by a set 
of single-particle wavefunctions for which antisymmetrization can be enforced 
exactly-a property not shared by the GFMC and DMC algorithms. However, 
whether or not the AFMC will be able to resolve ground state energies more 
accurately than the other Monte-Carlo methods for systems of physical interest 
remains an open question. 

Our results for various systems make it clear that, as in other Monte-Carlo 
methods for many-body ground states, importance sampling is critical to obtaining 
efficient convergence and good statistics. A poor choice of the weighting function v] 
causes extremely long correlation and thermalization times and makes calculations 
impractical. A choice for q based on the trial wavefunction is generally adequate for 
simple systems, though not necessarily optimal. The “trick” is to build into the 
method as much as possible of the physics without biasing the results by limiting 
the degrees of freedom of the system. 

The proper treatment of fermion statistics in the AFMC is balanced by the need 
to specify wavefunctions and fields over all space and time, rather than just the 
coordinates of each particle. If the wavefunction is defined on a spatial mesh, the 
number of lattice points becomes prohibitive. This is especially true in several 
dimensions where meshes become extremely large, unless there is symmetry so that 
various spatial degrees of freedom can be integrated out. However, sampling of the 
Fourier components of the field appears to circumvent this problem, at least for 
regular potentials with Fourier transforms, since it can eliminate the need for a 
spatial lattice. This method is also more efficient, since the Fourier space random 
walk involves only the physically important lowest-frequency components. This 
provides some hope that more complicated systems can be treated with the AFMC. 
However, the representation of the many-body wavefunction as a set of single-par- 
ticle orbitals may make it impossible to deal with potentials with a very strong 
repulsive core, since a determinantal form for the wavefunction is not a good 
approximation to the exact eigenstate in these cases. 

Recently, progress has been made in developing functional integral techniques for 
nuclear physics using a variety of representations of the evolution operator 
[8, 14, 241. Other than its exact enforcement of antisymmetrization, the AFMC 
possesses one significant and perhaps crucial advantage-it is the only form that 
allows the energy integral to be cast into a form involving predominantly non- 



26 SUGIYAMA AND KOONIN 

negative terms in several dimensions [24]. Due to the nature of the wavefunction 
representation, the AFMC also deals easily with state-dependent potentials. Unfor- 
tunately, the scale of computations means that the treatment of realistic potentials 
will be extremely time-consuming. For certain problems, such as spin systems on a 
lattice, AFMC calculations appear feasible. For general multidimensional systems, 
however, the AFMC approach lies at the limit of presently available computer 
facilities. The development of more powerful stochastic techniques for many-fer- 
mion problems therefore remains a major conceptual challenge in this field. 
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