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A b s t r a c t :  An express ion  for a genera l  Slater  d e t e r m i n a n t  is wr i t t en  in t he  n o t a t i o n  of second 
quan t i za t i on .  This  express ion  ha s  j u s t  t he  r igh t  n u m b e r  of a rb i t r a ry  coefficients,  so no sub-  
s id ia ry  condi t ions  a re  requi red ,  and  t he  express ion  for a pa r t i cu la r  d e t e r m i n a n t  is un ique .  
This  n o t a t i o n  is u sed  to s t u d y  two problems .  F i rs t ly ,  a condi t ion  for a pa r t i cu la r  so lu t ion  of 
t he  H a r t r e e - F o c k  equa t i ons  to min imize  t he  expec t a t i on  va lue  of t h e  H a m i l t o n i a n  is derived.  
This  condi t ion  is equ i va l en t  to t he  condi t ion  for s t ab i l i t y  of collective modes  in t he  r a n d o m  
phase  app rox ima t i on .  Secondly,  t he  d e t e r m i n a n t  which  min imizes  t he  expec ta t ion  va lue  of 
t he  H a m i l t o n i a n  while g iv ing  a pa r t i cu la r  va lue  to t he  expec t a t i on  va lue  of a c o m p o n e n t  of 
angu l a r  m o m e n t u m  is found.  In  th i s  way,  an  express ion  for t h e  m o m e n t  of iner t ia  of an  
ax ia l ly  s y m m e t r i c  s y s t e m  is der ived  wi th in  t he  f r a m e w o r k  of t he  H a r t r e e - F o c k  theory .  The  
express ion  for a d e t e r m i n a n t  is general ized to inc lude  t he  t ype  of wave  func t i ons  used  in t he  
t h e o r y  of supe rconduc t iv i ty .  

1. Introduct ion 

There is a considerable amount  of arbitrariness in the representation of a 
Slater determinant,  since any set of linear combinations of the wave functions 
which make up the determinant  gives rise to the same determinant. On the 
other hand, although the density matr ix uniquely determines the determinant,  
it must satisfy a subsidiary condition in order to be the density matr ix of a 
determinantal  wave function 1). I t  is convenient to use a representation in 
which the numbers of coefficients is equal to the number of degrees of freedom 
of anN-part icle  determinant, and such a representation is developed in sect. 2 of 
this paper. 

The representation is used to calculate the conditions that  a determinant 
must satisfy in order to minimize the expectation value of the Hamiltonian. 
The condition that  the first derivatives with respect to the coefficients should be 
zero gives the Hartree-Fock self-consistent field equations, but  the condition 
that  tile second derivatives should be non-negative gives an additional condition 
which must be satisfied. This new condition is the same as the condition for 
collective modes to be stable in the random phase approximation. 

Tile representation is also used to find a determinant which gives a particular 
value for the expectation value of the angular momentum, and which also 
minimizes the Hamiltonian. In the first approximation, the additional energy is 
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proportional to the square of the angular momentum, for a nonspherical system, 
and the constant of proportionality gives an expression for the moment of 
inertia. 

The representation can be generalized in an obvious way to give the type of 
wave functions which are used in the theory of superconductivity as a first 
approximation. This generalization is shown to be equivalent to the usual 
definitions of such wave functions in terms of quasi-particle operators, but no 
applications are worked out. 

2. Representat ion  of a Slater  De terminant  

We wish to represent a general Slater determinant I#)  for a system of N 
particles by use of creation and annihilation operators in a particular represen- 
tation. The operator at + creates a particle with wave function ~, and the 
operator a t annihilates a particle with wave function 9~. We denote by [#o) 
the configuration in which the first N-levels are occupied, so that  

N 

la 0> = (l-I a,*)10>, (1) 

where [0) denotes the vacuum, in which no particles are present. Written in this 
form, I#0) is normalized to unity. 

Theorem. Any N-particle Slater determinant ]#) which is not orthogonal to 
J~b0) can be written in the form 

N o o  

1~> = [ I I  1--[ (l+Cm, atma,)]l~o> 
i = l  m = N + l  (2) 

= Eexp(X X 
i m l  m m N + l  

where the coefficients C,~ are uniquely determined. Conversely, any wave 
function written in the form of eq. (2), with ]~o> defined by eq. (1), is an 
N-particle Slater determinant. 

This theorem is easily proved. We suppose that  f~b> is a determinant of the 
wave functions 

Y)., = ~, f~.v,, (3) 

where :~ runs from 1 to N. Using second quantization, we can write this Slater 
determinant as 

N N 

[~> = [l-I( Xf,,,a,*+ ~ f~mam')]10> • (4) 
c¢=1 i = 1  m ~ N + l  

Since we have assumed that  this wave function is not orthogonal to [~bo>, we 
can normalize it so that  its scalar product with ]~o> is unity. This gives 

(#o[#> = detf~, : 1, (5) 
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where bo th  ~ a nd  i run  f rom 1 to N. We write  the  inverse of the  N × N mat r ix  
f ~  as F ~ ,  so tha t  we have  

N N 

for i and j less t han  or equal  to N. We can then  define 

N 

C,,,, = X F,~,f,,~ (7) 
or--1 

for i _<_ N,  m > N.  We can wri te  N l inear independen t  combinat ions  of the wave 
functions~0~, which are, f rom eqs. (3), (6) and (7), 

N 

z, = Z F , ~  = ~ , +  C . ,~ . .  (s) 
a =  I r a = g +  I 

The  Slater  de t e rminan t  of these mus t  be identical  with 1~), so tha t  we have  
N N 

l O > = [ I I ( a , ' +  X c,~,a,~')]lO)= [II(l+ ~ C,,.a.'a,)a,']lO) 
t = 1  m = N + l  i = l  m = N + l  ~ (9) 

= [ I I  I I  (l+Cm, ada,)]l~o). 
t - - 1  m ~ N + l  

The  sum over  m can be replaced b y  a p roduc t  because all te rms in which the 
same creat ion opera tor  occurs more  than  once vanish. For  the same reason, 
the  infinite p roduc t  of eq. (2) can be wr i t ten  as an exponential .  The  coefficients 
are un ique ly  de te rmined  because C~, is the  rat io  of the  scalar p roduc t  of IO) 
with a~'a,lOo> to its scalar p roduc t  wi th  [Oo). Thus  we have  p roved  the theo- 
rem. 

The  converse is obvious,  since lO) defined b y  eq. (2) is a de te rminan t  of the 
wave funct ions Xi defined b y  eq. (8). 

3. Stability of Solutions of the Hartree-Fock Equations 

We can use our  theorem to find the  condit ions tha t  JO0) must  sat isfy if it 
minimizes the  expec ta t ion  value of the Hamil tonian ,  which we take  to be 

i = l J f f i l  i = l J = l  • = 1 * = 1  

We can expand  

E = ( O I H I O ) / ( O I # )  (11) 

in powers of the Cmi, and we require t ha t  the first order  t e rm should vanish,  
while the second order  t e rm should be posit ive definite. The  condi t ion for the 
first order  t e rm to vanish is 

N 

T~,+ Z (V,~,.--Vm~,~,) = O, (12) 
J r 1  
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and this, as is well known 2), is satisfied if the wave functions ~ satisfy the 
Hartree-Fock self-consistent field equations. If eq. (12) is satisfied, there is no 
loss of generality in assuming that the representation is such that, for all i and j ,  
we have 

N 

T,j+ X (V,,,,k--V,,.,j) =- e,~5, s, (13) 
k = l  

where e~ is the Hartree-Fock energy of ~,. The expectation value of the Hamil- 
tonian for Jq~)o is 

N N N 

E0 = <#o[U[#o) = Z T,,+ 1 Z Z (V,J,o--V,~,J,). (14) 
i = l  t = l i - - 1  

We can substitute eq. (2) into eq. (11) to evaluate the expression up to second 
order in the C,~. Making use of eqs. (13) and (14), we get 

N 

<oIq~>~ I + X  ~ IC,~,IL (15) 

and 
N 

<~lHlq~> ~ Eo<q~l~>+ ~ ~ (em--e,)lCm, I u 
/=I m=N+l 

N N 
~ - Z  Z ~ ~ * 1 [(V,...,,j-V~..jm)C.~ C,,.+-~(V~¢.,~,,-V.,.~)C,~,C.j (10) 

i=l j=l m=N+l n=N+l 
I * * +2(V~.,.-V,..,jJCm~ C.~ ]. 

Since the normalization factor drops out, the necessary condition for [~bo) 
to minimize the expectation value of the Hamiltonian is that the quadratic 
form on the right of eq. (16) should be non-negative definite. This means that 
the eigenvalues A of the equation 

(.~-e,)c~, + Y [ (v~ .~ , . , -v jm, , . )c .~+(v ,~ . , . -v~ . .~ , )c .~*]  = ;tcm,, 
~=1 ,=N+I (17) 

N 
* [(V,.,,.~--V,.,~m)C.~ + (V,~,,..--V,~,..,)C.~] = ~C~,*, 

J ~ l  n = N + l  

must all be positive or zero. If the self-consistent field has some symmetry, 
these equations may become much simpler. For example, in the case of an 
infinite medium where the wave functions ~, may be plane waves, eq. (17) 
couples C~  to C,,. only if the momentum difference between %, and ~, is equal 
to the momentum difference between ~, and %., and to C,j* only if it is equal to 
the momentum difference between 9~ and 9, .  In the case of a finite system, the 
self-consistent field may be spherically symmetric, in which case the eigenvec- 
tors of eq. (17) must be eigenvectors of angular momentum. 

There is a close relation between eq. (17) and the equation for the frequencies 
of collective modes in the random phase approximation. Using the method of 
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Sawada a), we can derive the equation for frequencies oJ of collective modes, 
which is 

N 

X X = 

~=i ,,,=N+I (18) 
N 

(e,,--e,)y~,+ ~. ~ [(V,,,,,~j--V,,,,jm)y,,j+(V,~,,,,,--V,s,,,m)x,,~] = --~o,y,,. 
i = 1  m = N + l  

This equation will be discussed in detail in another paper. If eq. (17) has 
eigenvalue zero, so has eq. (18). If one eigenvalue of eq. (17) is negative, then 
eq. (18) has imaginary eigenvalues. If no eigenvalue of eq. (17) is negative, then 
all the eigenvalues of eq. (18) are real. A collective mode with imaginary energy 
can build up indefinitely, and so the failure of the determinant [~bo) to minimize 
the expectation value of the Hamiltonian is revealed by  a unstable collective 
mode in the random phase approximation. This is why we refer to the "in- 
stabili ty" of the solution of the Hartree-Fock equations. This connection 
between the random phase approximation and the Hartree-Fock theory is not 
surprising, since Goldstone and Gottfried have derived the random phase 
equations by  using time-dependent Hartree-Fock theory 4). 

The nature of the instability which is found in a particular representation 
may give a clue to the nature of the best solution of the Hartree-Fock equations. 
For example, if quadrupole oscillations are unstable for a spherically symmetric 
solution, we would conjecture that  the shape of the best self-consistent potential 
would be approximately spheroidal. This situation might occur in a model of 
deformed atomic nuclei. If [¢0) is a determinant of plane waves, density fluc- 
tuations may be unstable, and the best self-consistent potential is likely to be 
periodic (in one, two, or all three dimensions). This possibilitTy has been 
discussed by  Overhauser 5). 

Unless [¢0) is a determinant of plane waves, there are always Slater deter- 
minants which give the same expectation value of a translation-invariant 
Hamiltonian, because the position of the wave function does not affect the 
expectation value. If the self-consistent potential is not spherically symmetric, 
the orientation can also be changed without affecting the expectation value. 
An infinitesimal displacement r is generated by  putting 

cm, = f m*r • V (1.,) 

in eq. (2), and an infinitesimal rotation about the x-axis is generated by putting 

--z 3 

where ~ is the component of the spin angular momentum operator, in eq. (2). 
It can easily be verified that eqs. (19) and (20) give eigenvectors of eq. (17) 
with eigenvalue zero. The right side of eq. (19) is only zero if the self-consistent 
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field is translation invariant, and the fight side of eq. (20) is only zero if the 
self-consistent field is invariant under rotations about the x-axis. Eq. (19) does 
not give an eigenvector of eq. (17) when the Hartree-Fock theory is applied to 
electrons in any atom, since the Hamiltonian is not translation invariant, but  
the nucleus of the atom provides a natural origin for the coordinate system. 

4. The  Rota t iona l  P r o b l e m  

There is a natural way  of calculating the moment of inertia of a system within 
the framework of the Hartree-Fock theory. We can try to find what determi- 
nant minimizes the expectation value of the H ~ i l t o n i a n  subject to the restric- 
tion that  the average value of a component of the angular momentum should 
have a particular value. The expectation value of the Hamiltonian will generally 
increase as the angular momentum increases, and the rate of increase gives an 
estimate for the moment of inertia. This method is similar to the method propos- 
ed by  Gross s) but  Gross required the exponent on the fight of eq. (2) to be a 
local operator, while we shall not make that requirement. 

A similar method certainly gives the fight answer for the translational 
problem. If I~0> is a determinant which gives zero for the expectation value of 
the linear momentum, 

N 

I~> = exp[(iP/N~) ~ x,]lqSo> (21) 
i m l  

is a determinant which gives P for the expectation value of the x-component of 
the linear momentum. The expectation value of the energy increases by  
p2/2NM, where M is the mass of one particle, so we correctly calculate the 
total mass of the system to be NM. In this case, our method is identical with 
that  of Gross e). 

In the rotational problem it is not possible to get an exact answer. We suppose 
that  the determinant J~o} which minimizes the expectation value of the Hamil- 
tonian gives expectation value zero for all components of angular momentum, 
but  that  it has only axial symmetry, not spherical symmetry. The orientation 
of the axis of symmetry is not determined. If we require that  the expectation 
value of the x-component of angular momentum J~ have a particular very small 
value, the determinant which minimizes the expectation value of the Hamil- 
tonian is very nearly equal to l~0} only if its axis is in the yz-plane. We, there- 
fore, choose the axis of I@o) to be along the z-axis, and use eq. (2) to expand 
the expectation value of Jx. We get 

N 

<oIJ, lO> ~ ~, ~ [(J.),,,,c.,,+C,.,*(J:~),.,], (22) 
i = l  m : N + l  

to first order. The expectation value of the Hamiltonian is given by  eq. (16), 
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to second order. Using the method of undetermined multipliers, we find that  the 
equations for the coefficients Cm~ are 

N co 

(e.,,--e,)Cm, + X 2~ [(V,,,,,.,,--V~,,,,,,,)C,,,+(V,..,,,~--V,.,.,,~,)C,,a*] = F2(J.),,., 
,=I -=N+a (23) 

N 

(.,,,--e,)C,,,,*+ 2~ ~ [(V,,,,.,,--V,,,,,r.)C,,,*+ (V,,.,,,,,--V,~ .... )C.j] = ~2(J,,),,,,, 
.*=1 n = N + I  

provided that  •, and hence the expectation value of Jx, is sufficiently small. 
If we use eqs. (16), (22) and (23) to calculate the moment of inertia, we get 

J _~ ( (oIJx lO))2 /2( (~IHIO)-Eo(OI~))  
N (24) 

= X  ~ [(l~),,,,c,,,,+(l,),,,c,.,*]l~, 
i = l  m = N + l  

which is independent of ~.  The solution of eq. (23) is generally quite complicat- 
ed, but eq. (24) has the structure of the cranking model of Inglis 7). If we ignore 
the terms which involve the interaction in eq. (23), we get immediately 

N c o  

J = 2 Z Z I(J~,),,,,12(*,,,-e,) -1, (25) 
i ~ l  m = N + l  

which is the simple cranking model formula. This follows from eq. (23) if the 
exchange terms in the potential are neglected, and so would be correct if the 
Hartree theory rather than the Hartree-Fock theory were used. In the Hartree- 
Fock theory corrections to the simple formula will generally be necessary. 
Our formula is probably rather more difficult to use than that  of Gross e), but 
may yield a higher value of the moment of inertia, since the trial wave functions 
are less restricted. 

5. Generalization of the Representation 

We can generalize the wave function [O), which is defined by eq. (2), in an 
obvious way, and get 

N N N c o  

I~') = [exp[½ X X C,,a,a,+ { ~. X (C,,,,--C.,,)a,,,ta, 
i ~ l J f f i l  f = l  r e = N + 1  (26) 

r e = N + 1  n f N + l  

This is the type of wave function which is used as a first approximation in the 
theory of superconductivity, and particular examples of this representation 
have been used by Bardeen, Cooper and Schrieffer s), and by Valatin 9) in this 
connection. The comparison of eqs. (2) and (26) shows how this type of wave 
function can be regarded as a generalized Slater determinant, and why the 
variational method of determining the wave function is a generalization of the 
Hartree Fock theory x0). 
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This theory is usually developed in terms of quasi-particle operators which are 
linear combinations of particle creation and annihilation operators. If we have a 
complete set of quasi-particle annihilation and creation operators ~¢~, ,<~*, then 
there is a wave function [q~'o) such that  

= 0 (27) 

for all i. The determinant I~b0) is a special case of such a wave function. It  is 
easy to show that  there is a complete set of quasiparticle annihilation operators 
fl~ which give zero when they operate on the wave function 

[q~') = [exp (½ X X C,j ~,* ~*)] ]qs' 0). (28) 
i J 

One such operator is proportional to 

X 
J 

because of the commutation relation 

[~,, exp(½ X X C,k°gt°~k*)] = ~, (C ,*- -C, , ) °q  t exP(½ X X CJk%t~k*)" (29) 
j k I J k 

A complete set of quasi-particle annihilation operators can be chosen in this 
way. 

The methods of this paper could be used to study whether the solution of the 
variational problem does minimize the expectation value of the Hamiltonian. 
In a particular case, it has been shown that the condition for a minimum and 
the condition for the stability of collective modes in the random phase approxi- 
mation are identical n). It  would also be possible to use this method to study 
the rotational problem in a superfluid system of fermions, although it is not 
obvious that the results would be different from the results obtained by Migdal ~e). 

The author wishes to thank Dr. J. J. Griffin and Dr. J. G. Valatin for some 
helpful discussions which he has had with them. 
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