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We propose a new quantum Monte Carlo algorithm to compute fermion ground-state properties. The
ground state is projected from an initial wave function by a branching random walk in an over-complete
basis space of Slater determinants. By constraining the determinants according to a trial wave function
~Wr), we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The
method is variational and is exact if ~'Pr) is exact. We report results on the two-dimensional Hubbard
model up to size 16 X 16, for various electron fillings and interaction strengths.

PACS numbers: 71.10.+x, 02.70.—c, 71.20.Ad, 71.45.Nt

Quantum Monte Carlo (QMC) methods are often the
only suitable tool for microscopic calculations of strongly
interacting many-body systems. They employ a stochastic
means to sample the ground-state wave function or den-
sity matrix, from which ground-state or finite tempera-
ture properties can be computed. QMC methods have
many different forms and are applied extensively to a
wide range of problems in physics and chemistry. Ap-
plications to systems of fermions, however, are plagued
by the so-called sign problem [1,2], which arises from
the combination of the Pauli principle and the use of ran-
dom sampling. The common signature of the sign prob-
lem is an exponentially vanishing signal-to-noise ratio as
the system size or inverse temperature is increased. For
years, this problem has significantly hindered simulations
of many-fermion systems.

In this Letter, we propose a new QMC algorithm
to study fermion ground-state properties. We cast the
projection of the ground state as a branching random
walk (RW) in an over-complete space of Slater determi-
nants. This approach combines important advantages of
two existing methods, the Green's function Monte Carlo
(GFMC) [3,4] and the auxiliary-field quantum Monte
Carlo (AFQMC) [5,6] methods. A constrained path (CP)
approximation is then imposed on the determinants, which
requires that the overlap with a trial wave function ~'if&. )
remain positive. The resulting method is free of any de-
cay of the signal-to-noise ratio. It is variational and is
exact if ~Wr) is exact. The CP approximation adopted
here is based upon the positive projection approach of
Fahy and Hamann [7], but can also be viewed as a gen-
eralization of the fixed-node (FN) [8—10] approximation
in GFMC. Test applications of the algorithm to the two-
dimensional Hubbard model yield, for the first time, very
accurate results (energy and various correlation functions)
for large systems.

Our general approach is independent of the form of the
Hamiltonian, but we will use the familiar two-dimensional

Hubbard model on a square (N = L X L) lattice for
illustrative purposes:

H =K+ V = t (c;—c~ + H.c.) + Ugn;tn;t.t

(ij)cT (1)

We use the imaginary-time propagator G —= exp( —krH)
to project out the ground state ~'Iro) from some initial state
~Wl"l). For small Ar,

—arK/2 —Arv —AvK/2 + g (g 3)

As in AFQMC, the factor involving interactions can be
mapped into a one-body form by a Hubbard-Stratanovic
(HS) transformation: exp( —b, rV) = g, P(x)Bv(x). The
auxiliary field x = ix&, x2, . . . , xz) introduces a fluctuating
potential at each lattice site, and P(x) is the probability
density function for x. For simplicity we assume the
discrete HS transformation [6,11], i.e. , each x; is either
1 or —1 and P(x) is a constant, 1/2 . The propagator is
then decomposed into a single-particle operator form,

G = Blr PP(x)Bv(x)Bx = QP(x)B(x). (3)

Here Blr = exp( —ArK/2) and any B implies Bt Bt.
For an initial state ~+~ol) not orthogonal to the ground

state ~WO), G" ~Wi")) leads to ~qj'o) at large n In AFQ. MC,
~+~al) is a single determinant and the path integral
(W" ~G'~qr ) —= g&„)D[xi",x " ', . . . , x ' ] is evaluated
by the Monte Carlo (MC) method, in which the n sets of
auxiliary fields are sampled according to the overlap D.
Our approach, instead, is to turn the propagation process
into a RW in a space 23. A point in 23 is ~P) = ~@t)~@t),
where each ~P ) is obtained from the N single-particle
orbitals on the N lattice sites. Formally, our procedure
resembles GFMC [3,4], but the RW in the latter is in
configuration space.

The propagation is described by the iterative equation

I+' ") = QP(x)B(x)~~i"l). (4)
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The antisymmetric wave function ~W~"l) at any stage n
can be written as some linear combination of ~P). In the
MC process, ~'P" ) is sampled by a finite ensemble of
points {@k ) in 27 called random walkers. A stochastic(&)

realization of (4) is in principle straightforward: A x is
generated randomly for each walker, and then its Slater

(n)determinant ~@k ) is propagated with B(x). Repeating
this procedure for all walkers generates a new population

) that samples ~W
"+' ).

This naive sampling approach, however, is not practi-
cal because of large statistical fIuctuations; hence an im-
portance sampling scheme [3,4] is required. We define
an importance function OT(P) —= ( IJT[@) as the overlap
of ~@) with a trial wave function ~'Ij'r). Typically, ~%'T)

is in general a linear combination of Slater determinants.
Equation (4) can now be transformed into an iterative
relation involving ~4') rather than ~'Ij'), where ~4'(@)) =
Oz. (@)~'P(P)). To ensure that the underlying propagation
remains unchanged, P(x) for a path ~P') = B(x)~P) must
be modified:

P(x) P(x)O, (@')/O, (y) . (5)
The probability P(x) for choosing x now depends on both
the initial and final positions of the path, but the iteration
can still be carried out as a RW: The population of walk-

(n)ers [@k ) now represents ~'P~"~). For each walker, a x is
sampled from P(x), ~@„)is propagated by B(x), and then

) is assigned a weight w[cbk ] = Q„P(x). The
process is repeated for all walkers in the current popu-
lation, and the resulting population represents ~W~"+'~).

We note that if an exact wave function is chosen as ~Wr),
(n)the normalization w[@& ] —= const, i.e., walkers will have

no branching.
In practice, P(x) is difficult to sample directly. We

circumvent this by sweeping through components of x one
at a time: Bv(x) = II; ~ bv(x;) The impo. rtance sampling
procedure is implemented for each x;, where it is easy to
sample P(x;) ~ OT(bv(x;)P)/Or(@) and to compute the
normalization g, , P(x;). Walkers are stabilized at suit-
able imaginary-time intervals by normalizing and reorthog-
onalizing the single-particle orbitals, as in AFQMC [6].
Schemes to control population sizes and reduce weight
fluctuations are similar to those used in GFMC [4].

The determinant RW approach has distinct advan-
tages over AFQMC. It is a true ground-state method
(nkvd ~ ~) that can be easily carried out with efficient
sampling techniques. We have frequently used nA~ as
large as 500, and A7. as small as 0.01. Also, at no
extra cost, a better initial wave function ~%'~0~) in the
form of multiple determinants can be employed to reduce
equilibration time. Compared with GFMC, this approach
automatically imposes antisymmetry by the use of deter-
minants. It is plausible that the sign problem is reduced
even without any approximation. Indeed, at half filling
or at U = 0, the approach is exact and completely free of
the sign problem. In general, we expect that propagation

with single-particle orbitals will be more effective than
with isolated points in configuration space. Furthermore,
as we discuss below, the calculation of off-diagonal ex-
pectations is much easier than in GFMC.

The most significant advantage of the determinant RW
approach is perhaps the simple and practical implemen-
tation of the CP approximation, which prevents the expo-
nential sign decay and provides a stable method. The sign
problem occurs because of the symmetry between

~ Po)
and —~Wo) [7,12], which implies a symmetry between any
pair of Slater determinants ~@) and —~P). That is, the
ground state resides in either half of 23, separated by a
nodal plane 2V (defined by (Wo~g) = 0) whose location
cannot be specified a priori. In the limit of small A~,
imaginary-time paths in D are continuous. Therefore, if
~'P~ ~(P)) is entirely on one side of 3V, a determinant can-
not cross the nodal plane 3V without touching it. Because
of the +/ —symmetry, however, the total asymptotic con-
tribution from any point on 3V is exactly zero in the path
integral. In other words, only paths confined in the half
space affect ~'Ij'o). In a MC simulation, no knowledge of
crossing is available; paths are sampled individually ac-
cording to the absolute values of their weights. Except
in cases where special symmetry prohibits the crossing of
3V [such as the particle-hole symmetry for (1) at half fill-
ing], paths that touch 3V grow exponentially in number
compared to confined paths. Therefore, asymptotically
the signal-to-noise ratio vanishes.

If the nodal plane 3V were known, we could simply
constrain the RW in the correct half space, and the MC
procedure would become stable and yield exact results.
Without precise know1edge of 3V, we seek an approximate
scheme with a trial nodal plane 3VT. From the path-
integral analysis above and the apparent analogy with FN,
it is natural [7] to require that walkers maintain a positive
overlap with

~
"IIT). However, because of the different basis

spaces used in GFMC and CPMC, the physical context
and implications of the FN and CP approximations are
different. In particular, the built-in antisymmetry and
the overcompleteness of D are expected to make CPMC
behave rather differently.

In their AFQMC calculations, Fahy and Hamann [7]
applied the condition of positive overlap with a ~Vr).
The difficulty with their method is in the nonlocal nature
of the propagation in AFQMC: Any change of a HS
field value affects all determinants that follow along the
path. In other words, updating x at any imaginary time
n requires evaluation of the overlaps at all future times,
and the simultaneous updating of all fields is required to
find acceptable paths. From the path-integral picture, it
is clear that the amount of computation increases rapidly
with system size or imaginary time.

With our RW realization of the propagation, updates and
propagation are local in time. It is therefore straightfor-
ward to place the constraint ('PT

~ @)) 0 on each walker at
each time n The constra. int defines DENT according to
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TABLE I. Comparison of variational, exact diagonalization,
and our calculated (CPMC) ground-state energies per site for
4 X 4 systems. Exact values for 5 1 5 1 systems are from
Ref. [15], and those for 7 'f 7 1 are from Ref. [16].

5l5l
5151
7171
7T71
7171

4
8
4
8

12

Variational

—1.1088
—0.7188
—0.8669
—0.592
—0.474

CPMC

—1.2238(6)
—1.0925 (7)
—0.983 1(6)
—0.728(3)
—0.606(5)

Exact

—1.2238
—1.0944
—0.9838
—0.742
—0.628

I'Ij'r). Any new walker that violates the constraint is given
a zero weight and is thus discarded [13].

Once the RW has equilibrated, measurements can
be made. For example, the ground-state energy Fo =
('PplHII'r)/( @pl Pr), so the CP estimate of Ep is

[P"][(@'"'IHI+ )/&4 I+ )]
n, k n, k (6)

To compute the expectation of an operator A that does
not commute with H, I+p) must be used instead of I'Pr)
in the estimator. This can be done using the principle
of forward walking [14] as in GFMC: We consider
any walker P at time n and its descendants [@') at
n + rI. The paths @ ~ P' are distributed according
to Or($')/Or($). For each of these paths we can
backpropagate I'Ij'r), i.e., operate the series of propagators
on I+r) in reverse imaginary-time order. In contrast with
forward walking in GFMC, where the computation of off-
diagonal expectations can be difficult or even impossible,
local and nonlocal operators are not distinguished here.

Within the restricted half space defined by 3V&,
the CP approach yields an eigenstate I Wp) for H, i.e.,

HI'Pp) = Epl%"). Therefore, in this half space Ep
(Po IHI Pr)/&+o I Pr) = (+o IHI+o)/&'Po I Po) Since
I+o) is an antisymmetric wave function, this variational
estimate must have the upper bound property: Fo ~ Fo.
We emphasize that, in contrast with lattice GFMC,
the RW in space 23 becomes continuous as A7- 0,
regardless of the discrete nature of the original system.

It was speculated in Ref. [7] that the quality of the
approximation should improve as I'Ifr) approaches I%'p).
We see that the physical meaning of 3V and the impli-
cation of the CP constraint are in fact rather clear. For
example, the CP results become exact if I Ifr) =

I Pp):

Any I@) satisfying ('Il'pl@) = 0 can be expanded as a sum
of the excited states of the system. Imaginary-time evo-
lution of such a determinant will remain orthogonal to
I+p). Therefore, its asymptotic contribution is zero. From
(6), we also see that Ep = Ep and the statistical error
disappears.

To test the CPMC method, we calculated the energy
and correlation functions for the two-dimensional Hub-
bard model. As in AFQMC, results are extrapolated to
the Ar = 0 limit to remove the Trotter error from (2).
For this purpose, calculations are carried out with at least
three Ar values (e.g. , 0.07, 0.1, and 0.15 for U = 4, and
smaller values for larger U). The trial wave function is ei-
ther a free-particle one or the Hartree-Fock solution from
an initial state in which the ]' and ], electrons are placed
on the two sublattices, respectively. The calculations re-
quired CPU times ranging from a few minutes (4 X 4) to
about 50 h (16 X 16) on an IBM RS6000 590.

In Table I, our calculated ground-state energies and
the variational values from I'Ifr) are shown together with
exact results, for various 4 X 4 systems. We note that
5 f 5 g corresponds to a closed shell case, while in 7 t 7 g

the Fermi level falls in a degenerate set of free-particle
states and the sign problem is quite severe in the AFQMC
calculation. In fact, in this case it is rather difficult to
obtain useful results with AFQMC, seen at U = 4 [1].

A more stringent test of the algorithm is the calculation
of correlation functions. Table II compares our results
with available exact values. The structure factors S
and Sd are the Fourier transforms of the real-space
magnetic and charge density correlations, and p(I) =
(g; c;+t c; )/N The MC .data were obtained with
the forward walking and backpropagation technique. The
variational results are rather poor in most cases, implying
that an extrapolation scheme [4] cannot be used. A poor
I'err) also makes the forward walking less stable; the
fact that our method works well is therefore even more
significant.

In Fig. 1, we show the computed Ep/N af. U = 4
for various lattice sizes and electron filling (n) = (Nt +
Nt)/N. Also shown are available AFQMC data [17].
We see that our results, which are variational, are often
indistinguishable from the AFQMC data, which should
be exact. It is, however, the fundamentally different
behaviors of the statistical errors that merit emphasis. In
AFQMC the sign problem causes the variance to increase

TABLE II. Comparison of selected values of correlation functions for 4 X 4 systems. S and Sd are the magnetic and density
structure factors, respectively, and p is the one-body density matrix. Exact diagonalization results are from Ref. [15].

Variational
CPMC
Exact

5$5$, U =4
p(2, 1) S (7r, m)

—0.125 0.624
—0.112(1) 0.73(1)
—0.112 0.73

Sd(rr, 7r)

0.624
0.504(l)
0.506

p(2, 1)
—0.125
—0.092(3)
—0.097

5151,U = 8
S (~, rr)

0.625
0.76(1)
0.75

Sd(rr, rr)

0,625
0.440(3)
0.443

p(2, 1)
—0.103
—0.101(2)
—0.101

7171,U =4
S (rr, rr)

44
2.9(2)
2.2

Sd(7r, 7r)

0.517
0.428(2)
0.424
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method to be useful in a variety of applications, including
continuum systems such as nuclei, atoms, molecules,
etc. Algorithmic topics for further exploration include
improvement of ~%'r) and development of released-node
[9] and interacting-walker [12] analogs.
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FIG. 1. Energies per site vs electron fillings from CPMC,
together with available AFQMC data. The lines are to aid
the eye. Curves for I = 8, 10, 12, and 16 are shifted up by 0.1,
0.15, 0.2, and 0.25, respectively.

exponentially with N and n57. , while the CPMC method
is stable and therefore exhibits power law scaling with
N. For 10 && 10 systems, the CPMC error bars are 30—
50 times smaller than those of AFQMC. For L ) 10, the
CPMC error bars are barely discernible, while AFQMC
fails to yield meaningful results. Indeed, the only 12 && 12
data point by AFQMC not only has a large error bar, but
also appears to lie above the CPMC value.

We also computed the momentum distribution, pair
correlation functions, and structure factors for systems
shown in Fig. 1 ~ The forward walking remains well
behaved, and the statistical errors very small. For smaller
systems (L = 6, 8, 10), various comparisons with existing
AFQMC data indicated that the agreement was similar
to that in Table II. For instance, the structures of the
computed S (k) vs k curves, including peak positions,
were in exact agreement with AFQMC results [17].

Very recently, ten Haaf et al. [10] constructed a stan-
dard GFMC FN approach for lattice fermions. It would
be instructive to compare it with CPMC. The advan-
tages that the determinant RW has over standard GFMC,
namely, built-in antisymmetry, overcompleteness of the
basis space, and easier calculation of off-diagonal expec-
tation values, should still hold.

In conclusion, we have presented a variational, stable
QMC approach for fermions. Very accurate results were
obtained even with a simple ~'IrT). Generalization to
continuous HS fields is straightforward. We expect the
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